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Abstract

This paper presents a case study for using high-level

programming techniques to support the migration of

software into hardware. The example is a derived im-

plementation of a symbolic processing machine. The

design environment employs codesign to maintain con-

sistency between an executable software model of the

system and the individual hardware components that

are extracted from it. The presentation focuses on the

use of continuations to move from a procedural view

of memory allocation to a process view. Our previ-

ous work has used functional models as a source for

correct hardware derivation using a transformational

algebra. The work reported here will result in exten-

sions that deal more powerfully with the factorization

of sequential subsystems.

Keywords and phrases: hardware-software code-

sign, hardware description languages, formal methods

for hardware, hardware emulation, transformational

programming, design derivation, Scheme.

1 Introduction

This paper illustrates how a set of high-level pro-

gramming techniques is used in a system prototyp-

ing environment to incrementally transfer executable

design speci�cations into hardware. In this special-

ized context, codesign issues arise because we want to

maintain the executability of the design model as its

components are realized in hardware one by one. It is

not clear whether the particular set of techniques de-

scribed here would be applicable in production code-

sign situations. However, we believe that this work

illustrates an important class of language features to
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consider for a successful codesign environment. It is

certainly the case that for the restricted codesign ap-

plications to which they have been applied, these tech-

niques have provided leverage over software map-over

problems.

The environment we have developed is based on

the programming language Scheme [1], a Lisp di-

alect which serves as the framework implementation

language, as a formal modeling language for system

speci�cation, and with certain restrictions as a hard-

ware description language [2, 3]. We exploit some ad-

vanced features of Scheme|most notably its support

of functional values with appropriate scoping rules|

in the techniques we describe below. These techniques

are standard in functional programmingmethodology,

but this is the �rst time they have been applied di-

rectly to hardware descriptions. Of course, analogous

techniques could be developed in any modeling lan-

guage, but this particular approach requires a prop-

erly scoped, higher-order modeling language.

The design environment we have developed allows

us to integrate the hardware realization of a system

component directly with the original software model.

This provides a means to seemlessly stage individual

subsystems into hardware while maintaining a coher-

ent, animated, global view of the system.

These techniques have been applied to the design

of VLSI emulations and moderate-scale demonstration

prototypes. In our experimentation so far, the goal

has been a full hardware realization with no software

components in the �nal product. Codesign is involved

during design in maintaining the global system de-

scription during its transition to hardware. In this

context, the bene�ts include greater longevity of func-

tional tests and more realism in design exploration and

validation. In addition, we have been able to eval-

uate partial designs earlier and more cheaply, since

we can incorporate and exercise hardware components

individually. Similar high-level language techniques

should provide comparable bene�ts in other codesign



settings, especially where experimentation is needed

to explore the hardware-software boundary.

1.1 The Codesign Exercise

The codesign exercise is a specialized processor and

memory system for execution of compiled Scheme.

This exercise is part of a research project to extend

a software-oriented methodology [4] to include hard-

ware implementation targets.

We begin with a very-high-level speci�cation, a sim-

ple Scheme interpreter representing a user-level de�-

nition of the language. Using existing techniques of

the software methodology, the naive language speci-

�cation is factored into a recursive compiler and an

iterative machine model.

The initial speci�cation is abstract in that it allows

the modeling language to provide the storage object

for the modeled machine. As Figure 1 illustrates, the
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Figure 1: Road map for a �-processor derivation

machine is further decomposed to incorporate a heap-

storage component. The heap object is self-managing;

it contains its own allocator, storage recycler, and

other mechanisms that support symbolic processing.

The shaded area shows the �nal components of the

project.

Figure 2 shows the resulting architecture of the

design, which consists of four processors sharing a

dual-ported memory. There are four possible imple-

mentation con�gurations of the system when three

of the processors along with the primitive memory

are grouped as the heap object. Both the CPU and

the heap may be implemented in either hardware or

software. Initially, the entire system is modeled at

a behavioral level in software. Using tools that we

have developed [3], the executable subsystem descrip-

tions are individually transformed into hardware. Fig-

ure 3 shows a prototype in which the heap system and

the CPU have been realized in this way. The pro-

totype environment, shown in Figure 3, consists of

an uncommitted wire-wrap area, banks of lights and
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Figure 2: System architecture of the Scheme Machine

Figure 3: Scheme Machine with the software host PC

switches, and other facilities unused in this project

[5, 6]. The computer to the right is connected to the

project board and is used for simulating the software

components, testing the hardware components, and

evaluating the entire system.

Typically a design starts with an all-software

model, and the modules of the design are gradually

mapped onto hardware. It is crucial that the system

be testable at each stage in the design process. Hard-

ware and software components co-exist throughout

the design, even if the �nal target is an all-hardware

implementation. We start with software models|

executable in Scheme|of both the CPU and the heap.

Next the heap is implemented in hardware. At

this stage the behavior of the hardware heap is tested

against its software speci�cation, which is also an ex-

ecutable model. The computer, running Scheme, exe-

cutes the speci�cation of the CPU model against the

heap implementation. Since the hardware heap is an

exact implementation of the software model, the soft-

ware CPU model can use either the software heap

model or the hardware heap through interface routines

and modules. Finally, the CPU model is implemented

in hardware running o� the hardware heap, complet-

ing the hardware implementation of the system.



2 Scheme, Continuations, and Behav-

ioral Description

Scheme is a lexically scoped dialect of Lisp, an

expression-oriented symbolic processing language. Its

support of functional (procedural) objects having full

status as data values is central to the techniques we

develop later. Space permits only a brief sketch of this

feature; tutorial material can be found in [7, 4].

The Scheme expression (lambda (x1 � � � xn) e)

returns a function with de�ning expression e involv-

ing parameters x1; : : : ; xn. A lambda expression may

occur anywhere that an expression is permitted; func-

tions may be created, passed as arguments, stored in

structures, and of course, applied to arguments. The

most common use of function expressions is to de�ne

procedures at top level, but function expressions are

also used to represent data structures and objects.

The techniques of this paper involve a more

subtle use of functional values to specify con-

trol 
ow. A continuation represents the future

course of a computation, mapping the result of

past execution to the �nal outcome of the program.

As a �rst illustration, consider the system below,

which de�nes a version of the factorial function,

FAC, together with a multiplication algorithm, MPY:

(define FAC1
(lambda (n m)

(if (= n 0) m

(FAC1 (- n 1) (MPY1 n m)))))
(define MPY1

(lambda (n m)

(if (= n 1) m

(+ m (MPY1 (- n 1) m)))))

In the following version of MPY, an explicit continua-

tion replaces the implicit recursion of the original ver-

sion. The parameter k tells MPY2 \what to do with

the result." The initial continuation is to resume the

calculation of FAC. Within the body of MPY, the con-

tinuation records what additions to do in the future.

An e�ect of introducing the continuation is that it

makes the system of de�nitions more iterative by mov-

ing calls to FAC and MPY into tail-recursive positions.

(define FAC2
(lambda (n m)

(if (= n 0) m

(MPY2 n m (lambda (x)

(FAC2 (- n 1) x))))))
(define MPY2
(lambda (n m k)

(if (= n 1)

(k m)

(MPY2 (- n 1) m (lambda (x)

(k (+ m x)))))))

Further re�nements to the system are based, in part,

on analysis of the continuations:

(a) (lambda (x) (FAC2 (- n 1) x)) captures the

value of n for use later. In the version below,

this value is passed through variable q in MPY.

Since there are no other values to capture within

the scope of FAC, the continuation can be de�ned

externally as the function RTN.

(b) (lambda (x) (k (+ m x))) simply adds m's to

the result, and can be therefore represented by

an accumulator, k.

(define FAC3
(lambda (n m)

(if (= n 0)

m

(MPY3 n m n m))))
(define MPY3
(lambda (n m q k)

(if (= n 1)

(RTN3 q k)

(MPY3 (- n 1) m q (+ k m)))))

(define RTN3
(lambda (n m)

(FAC3 (- n 1) m)))

We use systems of tail-recursive function de�nitions,

like the one above, as a behavioral hardware descrip-

tion language [2, 3]. The functions represent states of

an extended �nite-state machine, which in this exam-

ple would look like:

n=0
n!=0
q:=n;k=m

n=1
n:=q
m:=k

n!=1
n:=n−1
k:=k+m

true
n:=n−1

FAC3

RTN3

MPY3

n=0

FAC1

n!=0
n:=n−1;m:=mpy(n,m)

Before leaving this example, let us brie
y review

it from the perspective of formal veri�cation. The

�rst transformations that introduce continuations are

fairly standard. Although we have not yet mechanized

them, it would be reasonable to do so. Getting from

the second to the third version of FAC was a more

subtle undertaking. These re�nements are less likely

to be automated, and in the case that they are not,

another reasoning system might be needed to verify

them [8].

Although formal veri�cation is the underlying mo-

tive of this research, this article also has to do with

practical techniques for getting from the speci�cation

(or model) of an object to its realization in hardware.



3 Using Continuations in Factorization

Our notion of factorization is a general form of ab-

straction where parts of a design are encapsulated as

a named entity. The factored component may be a

complex valued stream (signal) in the circuit or a set

of operations on the signals [9]. Factorization may in-

volve a sequential or combinational component. We

also view sequential state machine decomposition as

factoring a set of states from the original design and

creating a coprocess which is communicating with the

residual system.

Maintaining the integrity and executability of the

model is a central issue in codesign. In this section we

introduce the use of continuations to provide for pro-

cess creation and decomposition without losing model

continuity [10]. Continuations provide a smooth and

seamless transition from subroutines to processes and

further to simple coprocesses.

3.1 Scheme Machine Exercise

We consider the execution of a cons operation on

an abstract Scheme machine. Cons is a primitive in

Scheme to construct lists. To execute cons, �rst the

arguments are computed, and then a memory object

called a consbox is allocated. The consbox has two

�elds into which the arguments are written. Machine0
in Figure 4 is a fragment of a state machine represent-

ing the Scheme Machine model. We consider some
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Fetch

true
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   alloc(m,s)

true
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   alloc(m,s)
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true
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EXEC
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k
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k:=RTNV

Figure 4: machine0 and machine1

of the states involving memory allocation to illustrate

the use of continuations in factorization. The EXEC

state computes the arguments of the cons operation,

followed by the CONS state, where a consbox is allo-

cated. The memory allocation is done by the function

alloc, which given the old memory, m, and the size,

s, of the desired allocation, returns the new memory

con�guration and a pointer, p, to the allocated cons-

box. Finally RTNC state writes the two arguments into

the consbox and calls the Fetch state.

In the initial speci�cation of the Scheme Machine

(machine0), the memory allocator (alloc) is a proper

subroutine in the behavioral model rather than a sep-

arate state machine. Our goal is to transform this ini-

tial model of the machine into a target model where

the machine and allocator are interactive processes.

To facilitate this decomposition we �rst incorporate

the allocation as a new state, ALLOC, into the ma-

chine. In Figure 4 alloc is invoked during transi-

tions from CONS, whose continuation is RTNC, and VEC,

whose continuation is RTNV. In machine1 we introduce

a new state, ALLOC, as a common control path for the

two allocations. We now need a mechanism to pro-

ceed with either continuation. For the moment we

can simply pass the continuation itself, RTNC or RTNV,

through a new register k. We depict the conditional

state transitions following ALLOC as transitions from
k , representing an explicit assignment into the state

register of the machine. This transformation results

in a net reduction of one state at this level of abstrac-

tion. However, the real reduction is much greater,

since ALLOC will next be replaced by a sequential pro-

tocol.

Returning to the factorial example in Section 2,

we could save the continuation at the state FAC3 by

adding another register, r, to hold the state name

RTN3. Now MPY simply applies r to invoke the con-

tinuation.

(define FAC4
(lambda (n m)

(if (= n 0)

m

(MPY4 n m n m RTN4))))
(define MPY4
(lambda (n m q k r)

(if (= n 1)

(r q k)

(MPY4 (- n 1) m q (+ k m) r))))

(define RTN4
(lambda (n m)

(FAC4 (- n 1) m)))

The assumption in machine1 (Fig. 4) is that the

result of the allocation is immediately available. How-

ever, we would like to factor out the allocation from

machine1 in order to make allocation a concurrent

subprocess communicating with the machine. As

shown in Figure 5, we split the state ALLOC, keep-

ing the the continuation machine2 and creating a new

state machine (allocator) which also has a state

called alloc generating the result of the allocation.

We also generate handshake signals, req and done,
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done=1
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Figure 5: machine2 with allocator state machine

between the two state machines and introduce wait

loops as part of the communication protocol. In this

example we have introduced a protocol in an ad hoc

manner; however, our research addresses sequential

decomposition formally as discussed in [11].

In the ALLOC state, machine2 sets the req signal

high and waits in an idle loop until the done signal

is set by the allocator. Then the new memory and

the pointer become available, and execution proceeds

with the continuation saved earlier. The allocator is

a coprocess waiting in a tight idle loop until it receives

a request, upon which it enters its ALLOC state and

signals done upon completion of the allocation. Now

the serial operations (like garbage collection) of the

alloc function can further be assigned to new states

of the allocator without the possible state explosion

problem in the initial speci�cation, if alloc would be

serialized in place.

4 Concluding Remarks

4.1 Evolution of the Project

Programming language research developed various

techniques to construct compilers and machine speci�-

cations from fully abstract language descriptions. The

Scheme Machine project is an extension of that re-

search into hardware. We started with a complete

executable behavioral speci�cation which allows us

to validate, animate, and explore the system design

at an abstract level. In the initial speci�cation of

the system, the subsystems are modeled as subpro-

cedures, avoiding a premature partitioning of the sys-

tem, which is a key problem in codesign[12].

We then elected an implementation of a primitive

memory|a dual ported DRAM capable in certain in-

stances of performing two operations in 125% of a cy-

cle. The memory unit also deals with refresh internally

using time{division multiplexing on the memory bus.

Now the memory has become a process rather than

a subroutine. However, this change is transparent to

the rest of the system, since the memory continues to

appear as a vector in the Scheme model.

Later on, the garbage collector and the trailer pro-

cess were staged onto the board. The collector is

tested with heap images downloaded in the memory.

At this point the CPU was redesigned, and we have

reconsidered the codesign issues involved to interface

the hardware and software components of the project.

This paper describes the process of gradually map-

ping an initial functional speci�cation onto hardware

while maintaining the integrity of the system with its

software and hardware components.

4.2 Technology Transfer to Practical
CAD

The work presented in the paper comes from a con-

text in which design techniques|and the tools that

derive from them|relate to a particular programming

methodology. The Scheme language has evolved hand-

in-hand with this methodology. There is no accessi-

ble counterpart to \continuation" in conventional lan-

guages (although C's setjmp is a related construct)

and certainly not in existing hardware description lan-

guages. One can say, on the one hand, that contin-

uations arose as a mechanism to selectively impose

control qualities on applicative speci�cations that are

inherent to imperative languages. The idea is to gain

control over control, just as in most languages one has

control over data representations.

A central problem in codesign is to bridge the

software-hardware \abstraction gap" [13]. This no-

tion presumes that we are able to specify at a high

enough level to obscure the boundaries of hardware

and software, or at least the interface between those

two. Equivalently, we must obscure the distinction

between procedure and process, and this entails ma-

nipulation of control. Thus, one would suspect that

constructs like continuations would be involved in the

abstraction.

On the other hand, there clearly are ways to handle

the examples presented in this paper in current HDLs.

As the state diagrams show, the end product intro-

duces a variable to encode the continuation. One could

simply save this value in a register and then branch

according to it later. In behavioral HDLs with a �xed

next-state register one could assign a stored value to

it (we know of no HDL that allows this, though).



The techniques presented here are advantageous in

two ways. First, they allow us to defer representa-

tion decisions for control; we were able to incremen-

tally embellish the behavioral speci�cation with more

control states. Second, the re�nements had minimal

impact on the behavioral model and could be readily

dealt with in the prototyping activity.

We believe that the goals and problems in codesign

are going to necessitate greater 
exibility at the spec-

i�cation level than currently exists in HDLs. There

needs to be more interaction between software and

hardware subsystem development [10]. There needs

to be less bias toward software or hardware in mod-

eling languages and their a�liated tools [12]. We

found it encouraging that control manipulation tech-

niques that have been developed in software-oriented

research were so readily adapted to hardware speci�-

cation problems and prototyping activities.
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