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Abstract

This paper presents a fast and effective linear intraprocedu-
ral register allocation strategy that optimizes register usage
across procedure calls. It capitalizes on our observation that
while procedures that do not contain calls (syntactic leaf
routines) account for under one third of all procedure ac-
tivations, procedures that actually make no calls (effective
leaf routines) account for over two thirds of all procedure
activations. Well-suited for both caller- and callee-save reg-
isters, our strategy employs a “lazy” save mechanism that
avoids saves for all effective leaf routines, an “eager” restore
mechanism that reduces the effect of memory latency, and a
“greedy” register shuffling algorithm that does a remarkably
good job of minimizing the need for temporaries in setting
up procedure calls.

1 Introduction

Register allocation, the complex problem of deciding which
values will be held in which registers over what portions of
the program, encompasses several interrelated sub-problems.
Perhaps the most well-known of these is to decide which vari-
ables to assign to registers so that there is no conflict [5].
Another involves splitting live ranges of variables in order
to reduce conflicts. These problems have been addressed for
both intraprocedural and interprocedural register allocation.
Optimizing register usage across procedure calls is also an
important problem, but up to now it has been addressed
primarily in terms of interprocedural analysis.

In this paper we describe a fast and effective linear in-
traprocedural register allocation strategy that optimizes reg-
ister usage across procedure calls. In conjunction with lo-
cal register allocation, this strategy results in performance
within range of that achieved by interprocedural register al-
location. Furthermore, it is successful even in the presence
of anonymous procedure calls, which typically cause inter-
procedural register allocation techniques to break down.
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Our compiler dedicates a set of registers to be used to
hold procedure arguments, including the actual parameters
and return address. Any unused registers (including regis-
ters containing non-live argument values) are available for
intraprocedural allocation, both for user variables and com-
piler temporaries. Other registers are used for local register
allocation and to hold global quantities such as the stack
pointer and allocation pointer.

Three costs must be minimized in order to optimize reg-
ister usage across procedure calls: the cost of saving live
registers around calls, the cost of restoring saved registers
before they are used, and the cost of “shuffling” argument
registers when setting up the arguments to a call, some of
which may depend upon the old argument values. It is easy
for these costs to exceed the benefits of register allocation,
especially with many registers dedicated to procedure argu-
ments.

We analyzed the run-time call behavior for a large va-
riety of Scheme programs. While procedures that contain
no calls (syntactic leaf routines) account for under one third
of all procedure activations, procedures that actually make
no calls (effective leaf routines) account for over two thirds.
We capitalize on this fact by using a “lazy” save mechanism
that avoids saves for all effective leaf routines. In addition,
we reduce the effect of memory latency by employing an “ea-
ger” restore mechanism. Although this approach sometimes
introduces unnecessary restores, we found that a lazy mech-
anism did not improve performance and added considerable
compile-time overhead. Finally, we employ a “greedy” reg-
ister shuffling algorithm that does a remarkably good job of
minimizing the need for temporaries in setting up procedure
calls.

Section 2 presents our lazy save, eager restore, and greedy
shuffling algorithms. Section 3 describes our implementa-
tion of the algorithms. Section 4 discusses the performance
characteristics of our implementation. Section 5 describes
related work. Section 6 summarizes our results and discusses
possibilities for future work.

2 Save and Restore Placement

For purposes of discussion we describe our strategy for save
and restore placement in terms of caller-save registers and
the simplified language of expressions based on Scheme [8]
below. In Section 2.4 we explain how our strategy applies
to callee-save registers.



Benchmark Lines Description

Compiler 30,000 Chez Scheme recompiling itself

DDD 15,000 hardware derivation system [3]
deriving Scheme machine [4]

Similix 7,000 self-application of the
Similix [2] partial evaluator

SoftScheme 10,000 Wright’s soft typer [15]
checking a 2,500 line program

Table 1.

E → x
→ true
→ false
→ call
→ (seq E1 E2)
→ (if E1 E2 E3)

We assume that assignment conversion has already been
done, so there are no assignment expressions. All constants
are reduced to either true or false. For simplicity, we ignore
the operator and operands of procedure calls by assuming
they have been ordered in some way and placed in a series
of seq expressions whose last entry is call.

2.1 Lazy Save Placement

The natural strategy for save placement involves two ex-
tremes: the callee-save registers used in a procedure are
saved on entry, whereas the caller-save registers live after
a call are saved right before the call. The natural callee-
save strategy saves too soon in the sense that it may intro-
duce unnecessary saves when a path through the procedure
does not use the registers. The natural caller-save strategy
saves too late in the sense that it may introduce redundant
saves when a path contains multiple calls. Our unified strat-
egy optimizes the placement of registers saves between these
two extremes for both callee- and caller-save registers.

We tooled the Chez Scheme compiler to insert code to
count procedure activations in a variety of programs and
found that syntactic leaf routines (those that contain no
calls1) on average account for under one third of all acti-
vations. We then retooled the compiler to determine how
many activations actually make no calls. These effective
leaf routines account for an average of more than two thirds
of procedure activations. Our lazy save strategy thus caters
to effective leaf routines, saving registers only when a call
is inevitable. Because of assignment conversion, variables
need to be saved only once. In order to minimize redundant
saves, therefore, our strategy saves registers as soon as a
call is inevitable. Table 2 gives the results of our measure-
ments for a set of benchmarks described in Table 1 and for a
Scheme version of the Gabriel benchmark suite [10]. Effec-
tive leaf routines are classified as syntactic and non-syntactic
leaf nodes. Non-syntactic internal nodes are activations of
procedures that have paths without calls but make calls at
run time, and syntactic internal nodes are those that have
no paths without calls.

First we present a simple algorithm for determining lazy
save placement. Next we demonstrate a deficiency involving
short-circuit boolean operations within if test expressions.

1Because tail calls in Scheme are essentially jumps, they are not
considered calls for this purpose.

Benchmark Calls Breakdown

Compiler 33,041,034

DDD 86,970,102

Similix 33,891,834

SoftScheme 11,153,705

boyer 914,113

browse 1,608,975

cpstak 159,135

ctak 302,621

dderiv 191,219

destruct 236,412

div-iter 1,623

div-rec 140,738

fft 677,886

fprint 43,715

fread 23,194

fxtak 63,673

fxtriang 5,817,460

puzzle 912,245

tak 111,379

takl 537,205

takr 111,380

tprint 41,940

traverse-init 1,268,249

traverse 7,784,102

triang 11,790,492

Average

Table 2. Dynamic call graph summary

syntactic leaf nodes

non-syntactic leaf nodes

non-syntactic internal nodes

syntactic internal nodes

We then present an improved algorithm that handles these
cases.

2.1.1 A Simple Save Placement Algorithm

We first define the function S[E], the set of registers that
should be saved around expression E, recursively on the
structure of our simplified expressions:

S[x] = ∅
S[true] = ∅
S[false] = ∅
S[call] = {r | r is live after the call}

S[(seq E1 E2)] = S[E1] ∪ S[E2]
S[(if E1 E2 E3)] = S[E1] ∪ (S[E2] ∩ S[E3])

We save register r around expression E iff. r ∈ S[E]. By
intersecting S[E2] with S[E3] in the if case, only those regis-
ters that need to be saved in both branches are propagated,
which yields a lazy save placement. The union operator in
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the seq case places the saves as soon as they are inevitable.
It can be shown that this placement is never too eager; i.e.,
if there is a path through any expression E without making
a call, then S[E] = ∅.

2.1.2 Short-Circuit Boolean Expressions

Short-circuit boolean operations such as and and or are
modeled as if expressions. As a result, if expressions nested
in the “test” part occur frequently. Consider the expres-
sion (if (and x call) y call), which is modeled by (if (if x
call false) y call). There is no path through this expres-
sion without making a call, so we would like to save all the
live variables around the outer if expression. Unfortunately,
the above algorithm is too lazy and would save none of the
registers, regardless of which registers are live after the calls:

S[(if (if x call false) y call)]
= S[(if x call false)] ∪ (S[y] ∩ S[call])
= (S[x] ∪ (S[call] ∩ S[false])) ∪ (∅ ∩ S[call])
= ∅ ∪ (S[call] ∩ ∅) ∪ ∅
= ∅

To correct this deficiency, we must be sensitive to condi-
tionals and constants, especially when they occur in a test
context.

2.1.3 The Revised Save Placement Algorithm

The basic principle is to consider the paths through the con-
trol flow graph. Along a given path we take the union of the
registers that need to be saved at each node. Then we take
the intersection of all the paths to determine the registers
that need to be saved regardless of the path taken. In order
to facilitate this process, we define two functions recursively:
St[E], the set of registers to save around E if E should eval-
uate to true, and Sf [E], the set of registers to save around
E if E should evaluate to false. Register r is saved around
E iff. r ∈ St[E] ∩ Sf [E].

The base cases are defined as follows, where R is the set
of all registers:

St[x] = ∅ Sf [x] = ∅
St[true] = ∅ Sf [true] = R
St[false] = R Sf [false] = ∅
St[call] = {r | r is live Sf [call] = {r | r is live

after the call} after the call}
Since it is impossible that true should evaluate to false,

and vice versa, we define these cases to be R so that any
impossible path will have a save set of R, the identity for
intersection. Thus, impossible paths will not unnecessarily
restrict the result.

Now we define the recursive cases. Intuitively, the set
St[(seq E1 E2)] is the set of registers to save if the seq
expression evaluates to true. There are two possible paths:
E1 is true and E2 is true, or E1 is false and E2 is true. Thus,
St[seq] = (St[E1] ∪ St[E2]) ∩ (Sf [E1] ∪ St[E2]) = (St[E1] ∩
Sf [E1]) ∪ St[E2]. The case for Sf [(seq E1 E2)] is similar,
as the diagram illustrates:

E1

E2

??

??

t f

t f

(seq E1 E2)

St[seq]= (St[E1] ∩ Sf [E1]) ∪ St[E2]
Sf [seq]= (St[E1] ∩ Sf [E1]) ∪ Sf [E2]

Next, consider the two paths for which (if E1 E2 E3)
evaluates to true: E1 is true and E2 is true, or E1 is false
and E3 is true. Similarly, there are two paths for false, as
the diagram illustrates:

E1

E2 E3

¡
¡ª

@
@R

?? ??

t f

t f t f

(if E1 E2 E3)

St[if ] = (St[E1] ∪ St[E2]) ∩
(Sf [E1] ∪ St[E3])

Sf [if ] = (St[E1] ∪ Sf [E2]) ∩
(Sf [E1] ∪ Sf [E3])

Our example A = (if (if x call false) y call) now yields
the desired result. Let L be the set of live registers after A.
Let B = (if x call false).

St[B] = (∅ ∪ ({y} ∪ L)) ∩ (∅ ∪R)
= {y} ∪ L

St[A] = (St[B] ∪ ∅) ∩ (Sf [B] ∪ L)
= L

Sf [B] = (∅ ∪ ({y} ∪ L)) ∩ (∅ ∪ ∅)
= ∅

Sf [A] = (St[B] ∪ ∅) ∩ (Sf [B] ∪ L)
= L

We see that although no registers would be saved around
the inner if expression (since St[B]∩Sf [B] = ∅), all the live
registers would be saved around the outer if as desired.

It is straightforward to show that the revised algorithm
is not as lazy as the previous algorithm, i.e., that S[E] ⊆
St[E] ∩ Sf [E] for all expressions E. It can also be shown
that the revised algorithm is never too eager; i.e., if there is
a path through any expression E without calls, then St[E]∩
Sf [E] = ∅.

Figure 1 shows the control graphs for not and the short-
circuit boolean operators and and or and the derived equa-
tions for these operators.

2.2 Eager Restore Placement

We considered two restore strategies based on the question
of how soon a register r should be restored:

• eager: as soon as r might be needed, i.e., if r will
possibly be referenced before the next call, and

• lazy: as soon as r will be needed, i.e., if r will certainly
be referenced before the next call.

We present three abbreviated control flow diagrams to
demonstrate the differences in the two approaches. The reg-
ister save regions are indicated by a rounded box. Calls are
indicated by squares, references by circles, and restores by
dashes across the control flow lines. Control enters from the
top.

Figures 2a and 2b demonstrate how the eager approach
introduces potentially unnecessary restores because of the
joins of two branches with different call and reference be-
havior. Figure 2c shows an instance where even the lazy
approach may be forced to make a potentially unnecessary
restore. Because the variable is referenced outside of its en-
closing save region, there is a path that does not save the
variable. Consequently, the register must be restored on exit
of the save region.
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St[(not E)] = St[(if E false true)]
= (St[E] ∪R) ∩ (Sf [E1] ∪ ∅)
= Sf [E]

Sf [(not E)] = Sf [(if E false true)]
= (St[E] ∪ ∅) ∩ (Sf [E] ∪R)
= St[E]

E1

E2
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-
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St[(and E1 E2)] = St[(if E1 E2 false)]
= (St[E1] ∪ St[E2]) ∩ (Sf [E1] ∪R)
= St[E1] ∪ St[E2]

Sf [(and E1 E2)] = Sf [(if E1 E2 false)]
= (St[E1] ∪ Sf [E2]) ∩ (Sf [E1] ∪ ∅)
= (St[E1] ∪ Sf [E2]) ∩ Sf [E1]

E1

E2

?

-

?

-

f

t

f

t

St[(or E1 E2)] = St[(if E1 true E2)]
= (St[E1] ∪ ∅) ∩ (Sf [E1] ∪ St[E2])
= St[E1] ∩ (Sf [E1] ∪ St[E2])

Sf [(or E1 E2)] = Sf [(if E1 true E2)]
= (St[E1] ∪R) ∩ (Sf [E1] ∪ Sf [E2])
= Sf [E1] ∪ Sf [E2]

Figure 1.

ref

call

call

eager

lazy

eager, lazy

call

call

eager

eager

lazy

ref

call

ref

eager, lazy
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Figure 2.
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In summary, the eager approach would immediately re-
store any register possibly referenced before the next call. It
is straightforward and can be easily implemented in a single
linear pass through the abstract syntax tree. A bottom-up
pass through the tree could compute the variable reference
information and insert the necessary restores in parallel. Be-
cause the restores occur early, they may reduce the effect of
memory latency.

The lazy approach would restore whenever a reference is
inevitable before the next call or when the register is live
on exit from the enclosing save region. Its main advantage
is that most unnecessary restores can be avoided. Unfor-
tunately, this approach is less straightforward and requires
more passes through the abstract syntax tree.

We implemented both approaches early on and found
that the eager approach produced code that ran just as fast
as the code produced by the lazy approach. We concluded
from this that the reduced effect of memory latency offsets
the cost of unnecessary restores.

2.3 Greedy Shuffling

When setting up arguments to a call, the new argument val-
ues may depend on the old argument values; thus, argument
register shuffling is sometimes necessary. For example, con-
sider the call f(y, x), where at the time of the call x is in
argument register a1 and y in a2. In order to call f , y must
be assigned to a1 and x to a2, requiring a swap of these two
argument registers.

By not fixing the order of evaluation for arguments be-
fore register allocation, the compiler can determine an order-
ing that requires a minimal amount of shuffling, and some-
times it can avoid shuffling altogether. For example, the call
f(x+y, y+1, y+z), where x is in register a1, y is in register
a2, and z is in register a3, can be set up without shuffling
by evaluating y + 1 last. A left-to-right or right-to-left or-
dering, however, would require a temporary location for this
argument.

Because we do not fix the order of evaluation of argu-
ments early on, we cannot compute liveness information in
a pass before the shuffling. Since register allocation depends
on liveness information, we must perform register allocation,
shuffling, and live analysis in parallel.

Our shuffling algorithm first partitions the arguments
into those that contain calls (complex ) and those that do
not (simple). We use temporary stack locations for all but
the last of the complex arguments, since making a call would
cause the previous arguments to be saved on the stack any-
way. We pick as the last complex argument one on which
none of the simple arguments depend (if such a complex ar-
gument exists), since it can be evaluated directly into its
argument register.

Ordering the simple arguments is a problem of optimiz-
ing parallel assignments, as noted in [9, 12]. We build the
dependency graph and essentially perform a topological sort.
If we detect a cycle, we find the argument causing the largest
number of dependencies and remove it, placing it into a tem-
porary location, in hopes of breaking the cycle. We then con-
tinue the process until all arguments have been processed.
This “greedy” approach to breaking cycles may not always
result in the minimal number of temporaries. We have ob-
served that our algorithm, however, finds the optimal order-
ing for a vast majority of call sites (see Section 3.1).

2.4 Callee-Save Registers

We now describe how our lazy save strategy applies to callee-
save registers. As we noted earlier, the natural register save
placement strategy of saving on entry all callee-save regis-
ters used in a procedure introduces unnecessary saves when
a path through the procedure does not use the registers. Our
effective leaf routine measurements indicate that paths with-
out calls are executed frequently. Along these paths caller-
save registers can be used without incurring any save/restore
overhead. Using caller-save registers along paths without
calls, our approach delays the use of callee-save registers to
paths where a call is inevitable.

By adding a special caller-save return-address register,
ret , the revised save placement algorithm can be used to de-
termine which expressions will always generate a call. This
return register is used to hold the return address of the cur-
rent procedure and must be saved and restored around calls.
Consequently, if ret ∈ St[E]∩Sf [E],2 then E will inevitably
make a call, but if ret 6∈ St[E] ∩ Sf [E], then E contains a
path without any calls.

Chow [6] describes a related technique called “shrink
wrapping” to move the saves and restores of callee-save regis-
ters to regions where the registers are active. His technique,
however, is applied after variables have been assigned to
callee-save registers. Consequently, his approach introduces
unnecessary saves and restores when it assigns a variable
used along a path without calls to a callee-save register when
a caller-save register could be used instead. Our approach
uses inevitable-call regions to guide the placement of vari-
ables into registers and may decide to keep a variable in a
caller-save register until a call is inevitable, at which point
it may be moved into a callee-save register.

3 Implementation

We allocate n registers for use by our register allocator. Two
of these are used for the return address and closure pointer.
For some fixed c ≤ n− 2, the first c actual parameters of all
procedure calls are passed via these registers; the remaining
parameters are passed on the stack. When evaluating the ar-
guments to a call, unused registers are used when “shuffling”
is necessary because of cycles in the dependency graph. We
also fix a number l ≤ n− 2 of these registers to be used for
user variables and compiler-generated temporaries.

The lazy save placement algorithm requires two linear
passes through the abstract syntax tree. The first pass per-
forms greedy shuffling and live analysis, computes St[E] and
Sf [E] for each expression, and introduces saves. The second
pass removes redundant saves.

The eager restore placement algorithm requires one lin-
ear pass. It computes the “possibly referenced before the
next call” sets and places the restores. This pass can be run
in parallel with the second pass of the lazy save placement
algorithm, so the entire register allocation process requires
just two linear passes.

3.1 Pass 1: Save Placement

The first pass processes the tree bottom-up to compute the
live sets and the register saves at the same time. It takes two
inputs: the abstract syntax tree (T ) and the set of registers
live on exit from T . It returns the abstract syntax tree
annotated with register saves, the set of registers live on
entry to T , St[T ], and Sf [T ].

2This was in error in the proceedings.
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Liveness information is collected using a bit vector for
the registers, implemented as an n-bit integer. Thus, the
union operation is logical or, the intersection operation is
logical and, and creating the singleton {r} is a logical shift
left of 1 for r bits.

Save expressions are introduced around procedure bodies
and the “then” and “else” parts of if expressions, unless both
branches require the same register saves.

When we encounter a call, we use the following greedy
shuffling algorithm:

1. We build the dependency graph for the register ar-
guments. Since calls destroy the argument registers,
building the dependency graph involves traversing the
tree only down to calls. After the order of evalua-
tion has been determined, the arguments are traversed
again by the current pass, which will visit the nodes
only one more time, since they require no shuffling.
Thus, the overall pass is linear since all nodes in the
tree are visited at most twice.

2. We partition the register arguments into those that do
not contain calls (simple) and those that do (complex).

3. We search through the complex arguments for one on
which none of the simple arguments depend. If one
is found, it is placed onto the simple list. If not, the
last complex argument is placed onto the simple list.
The remaining complex arguments are evaluated and
placed into temporary stack locations, since evaluation
of complex arguments may require a call, causing the
previous arguments to be saved on the stack anyway.

4. We look for an argument in the simple list that has
no dependencies on the remaining argument registers.
If we find one, we push it onto a “to be done last”
stack of arguments. Then we remove it from the de-
pendency graph and simple list and repeat step 4 until
all arguments have been assigned. Once all have been
assigned, we evaluate the arguments in the “to be done
last” stack directly into their argument registers. We
conclude by assigning all the remaining argument reg-
isters from the corresponding temporary locations.

5. If all arguments have dependencies on each other, we
greedily pick the one that causes the most dependen-
cies and evaluate it into a temporary location, in hopes
of breaking all the cycles. After removing it from the
dependency graph and simple list, we continue with
step 4. We use other argument registers as tempo-
raries when possible; otherwise, we use the stack.

This algorithm is O(n3), where n is the number of argu-
ment registers. Fortunately, n is fixed and is usually very
small, e.g., six in our current implementation. Consequently,
it does not affect the linearity of the pass. Furthermore, n
is limited in practice by the number of simple register argu-
ments, and the operations performed involve only fast inte-
ger arithmetic. Finding the ordering of arguments that min-
imizes the number of temporaries is NP-complete. We tried
an exhaustive search and found that our greedy approach
works optimally for the vast majority of all cases, mainly
because most dependency graph cycles are simple. In our
benchmarks, only 7% of the call sites had cycles. Further-
more, the greedy algorithm was optimal for all of the call
sites in all of the benchmarks excluding our compiler, where
it was optimal in all but six of the 20,245 call sites, and in
these six it required only one extra temporary location.

3.2 Pass 2: Save Elimination and Restore Place-
ment

The second pass processes the tree to eliminate redundant
saves and insert the restores. It is significantly simpler than
the first pass. It takes three inputs: the abstract syntax tree
(T ), the current save set, and the set of registers possibly
referenced after T but before the next call. It returns two
outputs: the abstract syntax tree with redundant saves elim-
inated and restores added, and the set of registers possibly
referenced before the next call.

When a save that is already in the save set is encoun-
tered, it is eliminated. Restores for possibly referenced reg-
isters are inserted immediately after calls.

Our earlier example demonstrates why there may be re-
dundant saves. Let’s assume that we have a procedure body
of (seq (if (if x call false) y call) x ). Then the first pass of
the algorithm would introduce saves as follows:

(save (x )
(seq (if (if x (save (x y) call) false)

y
(save (x ) call))

x ))

Two of the saves are redundant and can be eliminated. The
result of the second pass would be:

(save (x )
(seq (if (if x

(save (y)
(restore-after call (x y)))

false)
y
(restore-after call (x )))

x ))

4 Performance

To assess the effectiveness of our register allocator we mea-
sured its ability to eliminate stack references and its im-
pact on execution time for the set of programs described in
Table 1 and for the Gabriel benchmarks. We also exam-
ined the effect of our lazy save placement versus the two
natural extremes, “early” and “late.” Although the early
strategy eliminates all redundant saves, it generates unnec-
essary saves in non-syntactic leaf routines. Because the late
save strategy places register saves immediately before calls,
it handles all effective leaf routines well. This late strategy,
however, generates redundant saves along paths with mul-
tiple calls. Our lazy strategy strikes a balance between the
two extremes by saving as soon as a call is inevitable. Con-
sequently, it avoids saves for all effective leaf routines and
at the same time eliminates most redundant saves.

For the baseline and comparison cases local register al-
location was performed by the code generator, eight regis-
ters were globally allocated to support our run-time model
(which provides in-line allocation, fast access to free vari-
ables, etc.), and our greedy shuffling algorithm was em-
ployed. Thus our baseline for comparison is a compiler that
already makes extensive use of registers. We were able to
collect data on stack references by modifying our compiler
to instrument programs with code to count stack accesses.

Table 3 shows the reduction in stack references and CPU
time when our allocator is permitted to use six argument
registers. The table also gives the corresponding figures for
the early and late save strategies. On average, the lazy
save approach eliminates 72% of stack accesses and increases
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Lazy Save Early Save Late Save

stack ref performace stack ref performace stack ref performace

Benchmark reduction increase reduction increase reduction increase

Compiler 72% 30% 64% 26% 63% 13%

DDD 68% 47% 59% 43% 63% 44%

Similix 69% 26% 57% 18% 51% 9%

SoftScheme 71% 22% 55% 14% 43% 5%

boyer 66% 54% 49% 46% 60% 21%

browse 72% 39% 60% 35% 70% 56%

cpstak 77% 35% 59% 26% 77% 20%

ctak 71% 85% 50% 20% 70% 64%

dderiv 56% 52% 46% 42% 44% 47%

destruct 88% 33% 82% 34% 87% 36%

div-iter 100% 133% 80% 99% 99% 130%

div-rec 77% 30% 65% 29% 76% 38%

fft 71% 19% 71% 2% 67% –3%

fprint 68% 15% 48% 9% 61% 16%

fread 67% 39% 56% 22% 58% 24%

fxtak 62% 35% 32% 14% 45% 24%

fxtriang 76% 43% 59% 47% 76% 15%

puzzle 74% 34% 68% 32% 74% 34%

tak 72% 109% 52% 92% 50% 93%

takl 86% 67% 58% 41% 83% 67%

takr 72% 15% 52% 3% 50% 4%

tprint 63% 11% 41% 8% 56% 11%

traverse-init 76% 38% 70% 37% 74% 44%

traverse 50% 29% 48% 28% 48% 30%

triang 83% 41% 71% 32% 75% 48%

Average 72% 43% 58% 32% 65% 36%

Table 3. Reduction of stack references and resulting speedup for three different save
strategies given six argument registers relative to the baseline of no argument registers.
For both baseline and comparison cases local register allocation was performed by the
code generator, several registers were globally allocated to support the run-time model,
and our greedy shuffling algorithm was employed.

cc -O3 gcc -O3 Chez Scheme

Speedup 0% 5% 14%

Table 4. Performance comparison of Chez Scheme against the GNU and Alpha OSF/1
optimizing C compilers for tak(26, 18, 9) benchmark (results are normalized to the
Alpha OSF/1 compiler).

Early Save Lazy Save Speedup

Callee cc -O3 1.292s 0.676s 91%

save gcc -O3 1.233s 0.772s 60%

Caller-save by hand 0.990s 0.638s 55%

Table 5. Execution times of optimized C code for tak(26, 18, 9) using early and lazy
save strategies for callee-save registers, and hand-coded assembly using lazy saves for
caller-save registers.
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run-time performance by 43%, a significant improvement
over both the early (58%/32%) and late (65%/36%) save
approaches.

To compare our strategy against other register allocators,
we timed Scheme-generated code for the call-intensive tak
benchmark against fully optimized code generated by the
GNU and Alpha OSF/1 C compilers. Table 4 summarizes
these results using the Alpha C compiler as a baseline. We
chose the tak benchmark because it is short and isolates the
effect of register save/restore strategies for calls and because
the transliteration between the Scheme and C source code
is immediately apparent. Our Scheme code actually out-
performs optimized C code for this benchmark despite the
additional overhead of our stack overflow checks [11] and
poorer low-level instruction scheduling.

Part of the performance advantage for the Scheme ver-
sion is due to our compiler’s use of caller-save registers,
which turns out to be slightly better for this benchmark.
The remaining difference is due to the lazy save strategy
used by the Scheme compiler versus the early saves used by
both C compilers.

To study the effectiveness of our save strategy for both
caller- and callee-save registers, we hand-modified the op-
timized assembly output of both C compilers to use our
lazy save technique. In order to provide another point of
comparison, we hand-coded an assembly version that uses
caller-save registers. Table 5 compares the original C com-
piler times with the modified versions and the hand-coded
version. In all cases the lazy save strategy is clearly bene-
ficial and brings the performance of the callee-save C code
within range of the caller-save code.

To measure the effect of the additional register allocation
passes on compile time, we examined profiles of the compiler
processing each of the benchmark programs and found that
register allocation accounts for an average of 7% of overall
compile time. This is a modest percentage of run time for
a compiler whose overall speed is very good: on an Alpha
3000/600, Chez Scheme compiles itself (30,000 lines) in un-
der 18 seconds. In contrast, the Alpha OSF/1 C compiler
requires 23 seconds to compile the 8,500 lines of support
code used by our implementation. While 7% is acceptable
overhead for register allocation, the compiler actually runs
faster with the additional passes since it is self-compiled and
benefits from its own register allocator.

We also ran the benchmarks with several other variations
in the numbers of parameters and user variables permitted
to occupy registers, up through six apiece. Performance
increases monotonically from zero through six registers, al-
though the difference between five and six registers is mini-
mal. Our greedy shuffling algorithm becomes important as
the number of argument registers increases. Before we in-
stalled this algorithm, the performance actually decreased
after two argument registers.

5 Related Work

Graph coloring [5] has become the basis for most mod-
ern register allocation strategies. Several improvements to
graph coloring have been made to reduce expense, to de-
termine which variables should receive highest priority for
available registers, and to handle interprocedural register
allocation.

Steenkiste and Hennessy [14] implemented a combined
intraprocedural and interprocedural register allocator for
Lisp that assigns registers based on a bottom-up coloring of
a simplified interprocedural control flow graph. They handle

cycles in the call graph and links to anonymous procedures
by introducing additional saves and restores at procedure
call boundaries. Using a combination of intraprocedural and
interprocedural register allocation, they are able to eliminate
88% of stack accesses; approximately 51% via intraprocedu-
ral register allocation and the remainder via interprocedural
allocation. Our figure of 72% appears to compare favorably
since we do not perform any interprocedural analysis; differ-
ences in language, benchmarks, and architecture, however,
make direct comparison impossible.

Steenkiste and Hennessy found that an average of 36%
of calls at run time are to (syntactic) leaf routines; this is
similar to our findings of an average slightly below one third.
They did not identify or measure the frequency of calls to
effective leaf routines.

Chow and Hennessy [7] present an intraprocedural algo-
rithm that addresses certain shortcomings of straightforward
graph coloring. In their approach, coloring of the register in-
terference graph is ordered by an estimate of total run-time
savings from allocating a live range to a register, normal-
ized by the size of the region occupied. For live ranges with
equal total savings, priority goes to the shorter in hopes that
several short live ranges can be allocated to the same regis-
ter. In order to improve procedure call behavior, incoming
and outgoing parameters are “pre-colored” with argument
registers. The priority-coloring algorithm is able to make
effective use of caller-save registers for syntactic leaf proce-
dures, preferring callee-save registers for the rest.

Chow [6] extends the priority-based coloring algorithm
to an interprocedural register allocator designed to mini-
mize register use penalties at procedure calls. He provides
a mechanism for propagating saves and restores of callee-
save registers to the upper regions of the call graph. In this
scheme, saves and restores propagate up the call graph until
they reach a procedure for which incomplete information is
available due to cycles in the call graph, calls through func-
tion pointers, or procedures from external modules. Such re-
strictions render this approach ineffective for typical Scheme
programs which rely on recursion and may make extensive
use of first-class anonymous procedures. Chow also claims
that interprocedural register allocation requires a large num-
ber of registers in order to have a noticeable impact; the 20
available to his algorithm were inadequate for large bench-
marks.

Clinger and Hansen [9] describe an optimizing compiler
for Scheme which achieves respectable performance through
a combination of aggressive lambda-lifting and parallel as-
signment optimization. Lambda lifting transforms the free
variables of a procedure into extra arguments, decreasing
closure creation cost and increasing the number of argu-
ments subject to register allocation. Parallel assignment
optimization then attempts to make passing arguments in
registers as efficient as possible by selecting an order of eval-
uation that minimizes register shuffling. Their shuffling al-
gorithm is similar to ours in that it attempts to find an
ordering that will not require the introduction of tempo-
raries but differs in that any cycle causes a complete spill of
all arguments into temporary stack locations. Although [12]
describes a register shuffling algorithm similar to ours, de-
tails regarding the selection of the node used to break cycles
are not given.

Shao and Appel [13, 1] have developed a closure con-
version algorithm that exploits control and data flow infor-
mation to obtain extensive closure sharing. This sharing
enhances the benefit they obtain from allocating closures
in registers. Graph-coloring global register allocation with
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careful lifetime analysis allows them to make flexible and ef-
fective use of callee- and caller-save registers. Since the order
of argument evaluation is fixed early in their continuation-
passing style compiler, they attempt to eliminate argument
register shuffling with several complex heuristics including
choosing different registers for direct-called functions.

6 Conclusions and Future Work

In this paper we have described a fast linear intraprocedu-
ral register allocation mechanism based on lazy saves, eager
restores, and greedy shuffling that optimizes register usage
across procedure calls. The lazy save technique generates
register saves only when procedure calls are inevitable, while
attempting to minimize duplicate saves by saving as soon as
it can prove that a call is inevitable. We have shown that
this approach is advantageous because of the high percent-
age of effective leaf routines. The eager restore mechanism
restores immediately after a call all registers possibly refer-
enced before the next call. While a lazy restore mechanism
would reduce the number of unnecessary restores, we found
that restoring as early as possible compensates for unneces-
sary restores by reducing the effect of memory latency. The
greedy shuffling algorithm orders arguments and attempts
to break dependency cycles by selecting the argument caus-
ing the most dependencies; it has proven remarkably close
to optimal in eliminating the need for register shuffling at
run time.

Our performance results demonstrate that around 72%
of stack accesses are eliminated via this mechanism, and
run-time performance increases by around 43% when six
registers are available for parameters and local variables.
Our baseline for comparison is efficient code generated by
an optimizing compiler that already makes extensive use of
global registers and local register allocation. This is within
range of improvements reported for interprocedural register
allocation [14, 6]. Although the compiler now spends around
7% of its time on register allocation, the compiler actually
runs faster since it is self-compiled and benefits from its own
register allocation strategy.

Our effective leaf routine statistics suggest a simple strat-
egy for static branch prediction in which paths without calls
are assumed to be more likely than paths with calls. Prelim-
inary experiments suggest that this results in a small (2–3%)
but consistent improvement.

Other researchers have investigated the use of lambda
lifting to increase the number of arguments available for
placement in registers [13, 9]. While lambda lifting can
easily result in net performance decreases, it is worth in-
vestigating whether lambda lifting with an appropriate set
of heuristics such as those described in [13] can indeed in-
crease the effectiveness of our register allocator without sig-
nificantly increasing compile time.

Acknowledgement: The authors would like to thank Mike
Ashley for his helpful comments on an earlier version of this
paper.
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