
Printing Floating�Point Numbers Quickly and Accurately

Robert G� Burger� R� Kent Dybvig

Indiana University Computer Science Department

Lindley Hall ���

Bloomington� Indiana �����
�	��
 	�����	

fburger�dybg�cs�indiana�edu

Abstract

This paper presents a fast and accurate algorithm for print�
ing �oating�point numbers in both free� and �xed�format
modes� In free�format mode� the algorithm generates the
shortest� correctly rounded output string that converts to
the same number when read back in� regardless of how the
reader breaks ties when rounding� In �xed�format mode�
the algorithm generates a correctly rounded output string
using special � marks to denote insigni�cant trailing digits�
For both modes� the algorithm employs a fast estimator to
scale �oating�point numbers e�ciently�

Keywords� �oating�point printing� run�time systems

� Introduction

In this paper we present an e�cient �oating�point printing
algorithm� which solves the output problem of converting
�oating�point numbers from an input base �usually a power
of two� to an output base �usually ten��
The algorithm supports two types of output� free format

and �xed format� For free�format output the goal is to pro�
duce the shortest� correctly rounded output string that con�
verts to the same internal �oating�point number when read
by an accurate �oating�point input routine �	
� For exam�
ple� �

��
would print as ��� instead of ���������� Assuming

a round�to�nearest mode on input� the algorithm accommo�
dates any tie�breaking strategy� including IEEE unbiased
rounding� for example�
For �xed�format output the goal is to produce cor�

rectly rounded output to a given number of places with�
out �garbage digits� beyond the point of signi�cance� For
example� the �oating�point representation of �

�
might print

as ������������ even though only the �rst seven digits are
signi�cant� The algorithm uses special � marks to denote in�
signi�cant trailing digits so that �

�
prints as �������������

These marks are useful when printing denormalized num�
bers� which may have only a few digits of precision� or when
printing to a large number of digits�
Our algorithm is based on an elegant �oating�point print�

ing algorithm developed by Steele and White �
� Their
�Supported in part by a National Science Foundation Graduate

Research Fellowship

Published in Proceedings of the SIGPLAN ��� Con�
ference on Programming Language Design and Imple�
mentation� Copyright c� ���� by the Association for
Computing Machinery� Inc� Includes corrections from
Ra�aello Giulietti �� Nov �����

algorithm also supports both free� and �xed�format out�
put� although it does not properly handle input tie�breaking
strategies or distinguish between signi�cant and insigni�cant
trailing zeros� Furthermore� it is unacceptably slow for prac�
tical use� An important step in the conversion algorithm is
to scale the �oating�point number by an appropriate power
of the output base� Steele and White�s iterative algorithm
requires O�jlog xj� high�precision integer operations to scale
x� which results in poor performance for �oating�point num�
bers with very large and very small magnitudes� We devel�
oped an e�cient estimator that always produces an estimate
within one of the correct power� so our algorithm scales all
�oating�point numbers in just a few high�precision integer
operations�
Section � develops a basic �oating�point printing al�

gorithm in terms of exact rational arithmetic� Section �
describes an implementation of the algorithm using high�
precision integer arithmetic and our e�cient scaling�factor
estimator� Section � extends the algorithm to handle �xed�
format output and introduces � marks� Section summa�
rizes our results and discusses related work�

� Basic Algorithm

In describing the basic algorithm� we �rst explain how
�oating�point numbers are represented� using the IEEE
double�precision �oating�point speci�cation as an exam�
ple ��
� Second� we develop an output algorithm based on a
key feature of the representation� the gaps between �oating�
point numbers� Finally� we prove that our algorithm gen�
erates the shortest� correctly rounded output string from
which the original �oating�point number can be recovered
when input�

��� Floating�Point Representation

An important goal in the design of �oating�point numbers is
to provide a representation that can approximate real num�
bers to a certain number of digits of accuracy� Consequently�
a �oating�point representation embodies the notions of the
�rst few signi�cant digits and the location of the decimal
point�
A �oating�point number is modeled mathematically by

a mantissa� which corresponds to the �rst few signi�cant
digits� and an exponent� which corresponds to the location
of the decimal point� For example� suppose v is a �oating�
point number in base b �usually two�� The mantissa� f � and
exponent� e� are base�b integers such that v � f � be and

jf j � bp� where p is the �xed size of the mantissa in base�b
digits� Moreover� v is called normalized if bp�� � jf j� i�e��
the mantissa begins with a non�zero digit�
An un�normalized� non�zero �oating�point number can

be normalized by shifting the mantissa to the left and re�
ducing the exponent accordingly� Because the exponent has
a �xed size� however� some numbers cannot be normalized�
Such numbers are called denormalized �oating�point num�
bers�
If the input base is two� the mantissa of normalized� non�

zero numbers always begins with a one� Consequently� this
initial bit is often omitted from the representation and is
called the hidden bit � These representations often reserve
an exponent bit pattern to signal denormalized numbers�
The IEEE speci�cation ��
 also provides representations

for ����� positive in�nity ��inf�� negative in�nity ��inf��
and �not a number� �NaN��
An IEEE double�precision �oating�point number� v� is

represented as a ���bit datum composed of three �elds� a
one�bit sign� an eleven�bit unsigned biased exponent �be��
and a ��bit unsigned mantissa �m� with a hidden bit�
If 	 � be � ����� v is a normalized �oating�point number

whose value is sign ���� �m� � �be������ If be � �� v is a
denormalized �oating�point number whose value is sign m�
������� which includes ���� and ����� If be � ���� and
m � �� v is �inf or �inf� depending on the sign� If be � ����
and m �� �� v is NaN�
This type of representation produces uneven gaps be�

tween �oating�point numbers� Floating�point numbers are
most dense around zero and decrease in density as one moves
outward along the real number line in either direction�
Given a �oating�point number� v� it is useful to de�ne

its �oating�point successor� denoted by v�� and predecessor�

denoted by v�� All real numbers between v��v
�
and v�v�

�
round to v�
Suppose v � f�be as before� We consider the case where

f � �� the case for f � � is completely analogous� For all
v� v� is �f � 	�� be� If f � 	 no longer �ts in the �xed�size
mantissa� i�e�� if f � 	 � bp� then v� is bp�� � be��� If e is
the maximum exponent� v� is �inf�
For most v� v� is �f � 	� � be� For the remaining v�

the gap is narrower� If f � bp�� and e is greater than the
minimum exponent� v� is �bp � 	�� be���

��� Algorithm

We now develop an algorithm that takes advantage of the
gaps between �oating�point numbers in order to produce
the shortest� correctly rounded output string from which
the original �oating�point number can be recovered when
input�
For purposes of discussion� we limit the input to posi�

tive �oating�point numbers� Given a positive �oating�point
number v in terms of its mantissa and exponent� the algo�
rithm uses v� and v� to determine the exact range of values
that would round to v when input� Because input rounding
algorithms use di�erent strategies to break ties �e�g�� round
up or round to even�� we initially assume that neither end
point of the rounding range can be guaranteed to round to
v when input� In Section � we show how to relax this con�
straint based on knowledge of a particular input rounding
algorithm�
The algorithm uses exact rational arithmetic to perform

its computations so that there is no loss of accuracy� In

order to generate digits� the algorithm scales the number so
that it is of the form ��d�d� � � �� where d�� d�� � � �� are base�B
digits� The �rst digit is computed by multiplying the scaled
number by the output base� B� and taking the integer part�
The remainder is used to compute the rest of the digits using
the same approach�
The rounding range determines when the algorithm stops

generating digits� After each digit is generated� the algo�
rithm tests to see if either the resulting number or the re�
sulting number with the last digit incremented is within the
rounding range of v� If one or both of these numbers is
within range� the number closer to v is chosen� In the case
of a tie� any strategy can be used to decide� since both possi�
bilities would round to v when input� By testing the output
number at each digit� the algorithm produces the shortest
possible output string that would correctly round to v when
input� Moreover� it generates digits from left to right with�
out the need to propagate carries�
The following is a more formal description of the algo�

rithm� We use bxc to denote the greatest integer less than
or equal to x� dxe to denote the least integer greater than or
equal to x� and fxg to denote x� bxc� We always indicate
multiplication with the � sign� because we use juxtaposition
to indicate digits in a place�value notation�

Input� output base B and positive �oating�point number
v � f � be of precision p � �

Output� V � ��d�d� � � � dn�Bk� where d�� � � � � dn are base�
B digits and n is the smallest integer such that�

�	� v��v
�

� V � v�v�

�
� i�e�� V would round to v

when input� regardless of how the input rounding
algorithm breaks ties� and

��� jV � vj � Bk�n

�
� i�e�� V is correctly rounded��

Procedure�

	� Determine v� and v�� the �oating�point predecessor
and successor of v� respectively�

v� �

�
v � be if e � min� exp� or f �� bp��

v � be�� if e � min� exp� and f � bp��

v� � v � be

Let low � v��v
�
and high � v�v�

�
� All numbers be�

tween low and high round to v� regardless of how the
input rounding algorithm breaks ties�

�
�

��� � ���� �
�

�� Find the smallest integer k such that high � Bk� i�e��
k � dlogB highe� k is used to scale v appropriately�

�� Let q� �
v

Bk � Generate digits as follows�

d� � bq� �Bc q� � fq� �Bg
d� � bq� �Bc q� � fq� �Bg
���

���

�� Stop at the smallest n for which

�Unfortunately� this mathematical de�nition is too strong� and
Theorem � in Appendix A is false�

�

�	� ��d� � � � dn�Bk � low � i�e�� the number output at
point n would round up to v� or

��� ��d� � � � dn���dn�	

��Bk � high� i�e�� increment�

ing digit dn would make the number round down
to v�

If condition �	� is true and condition ��� is false� return
��d� � � � dn �Bk�

If condition ��� is true and condition �	� is false� return

��d� � � � dn���dn�	
�Bk�

If both conditions are true� return the number closer to
v� If the two are equidistant from v� use some strategy
to break the tie �e�g�� round up��

��� Correctness

We now prove that our algorithm is correct� We begin by
showing that the algorithm generates valid base�B digits�
the �rst of which is non�zero� and that there is no need to
propagate carries in the case of incrementing the last digit�
Because � � qi � 	 for all � � i � n� all the di are

valid base�B digits� Termination condition ��� guarantees
that if dn is incremented� no carry will be introduced� for
if there were a carry� termination condition ��� would have
held at the previous step� By the minimality of k and termi�
nation condition ���� the �rst digit must be non�zero� �See
Theorem 	 in Appendix A for a complete proof��
Next we show that output condition �	� holds� i�e�� the

algorithm always terminates with a number that correctly
rounds to v when input� satisfying the goal of information
preservation� In order to prove this� we �rst prove an in�
variant of the digit�generation loop by induction� for all i�
��d� � � � di�Bk�qi�Bk�i � v� In other words� the number
generated at step i is qi � Bk�i below v� �See Lemma � in
Appendix A�� This invariant leads to a more concise version
of the termination conditions �see the corollary to Lemma �
in Appendix A��

�	� qn �Bk�n � v � low � and

��� �	 � qn��Bk�n � high � v�

Since � � qn � 	 and Bk�n becomes arbitrarily close
to zero as n increases� termination condition �	� eventually
holds� thus� the algorithm always terminates� Moreover� the
invariant and the above termination conditions guarantee
that the algorithm terminates with a number strictly be�
tween low and high� �See Theorem � in Appendix A��
Having shown that the output rounds to v when in�

put� we now show that the last digit of the output is cor�
rectly rounded� i�e�� output condition ��� holds� Because

the algorithm chooses the closer of ��d� � � � dn � Bk and
��d� � � � dn���dn�	
�Bk� the last digit is correctly rounded�
�See Theorem � in Appendix A��
Finally� we show that no shorter output string rounds

to v when input� Equivalently� no �n � 	��digit num�
ber �trailing zeros are allowed� also rounds to v when in�
put� Suppose such a number� V �� exists� Using the in�
variant� one can easily show that ��d� � � � dn�� � Bk and

�The notation ��d� � � � dn���dn��� denotes
�

Bn
�

nX
i��

di

Bi
� Infor	

mally� this represents the number formed by incrementing the last
digit�

��d� � � � dn���dn���	
 � Bk are the two �n � 	��digit num�
bers closest to v� Without loss of generality� we assume that
V � is one of them� If V � is the �rst� termination condition �	�
would have held at step n� 	� a contradiction� If V � is the
second� termination condition ��� would have held at step
n � 	� a contradiction� Therefore� no shorter output string
rounds to v when input� �See Theorem in Appendix A��

� Implementation

The basic output algorithm presented in the preceding sec�
tion can be implemented directly in Scheme using built�in
exact rational arithmetic� The resulting code� however� runs
slowly� especially for �oating�point numbers with large ex�
ponents� The two main sources for the ine�ciency are the
high�precision rational arithmetic and the iterative search
for the scaling factor k� Because the algorithm does not
need the full generality of rational arithmetic �i�e�� there is
no need to reduce fractions to lowest terms or to maintain
separate denominators�� it is more e�cient to convert the
algorithm to use high�precision integer arithmetic with an
explicit common denominator� In this section we modify the
algorithm to use high�precision integer arithmetic and a fast
estimator for determining k�

��� Integer Arithmetic

In order to eliminate the high�precision rational arithmetic�
we introduce an explicit common denominator so that the
algorithm can use high�precision integer arithmetic� We also
make use of the more concise termination conditions given
in the preceding section�

Procedure�

	� Initialize r� s� m�� and m� such that v � r
s
� v�v

�

�
�

m�

s
� and v��v

�
� m�

s
according to Table 	�

�� Find the smallest integer k such that r�m�

s
� Bk� i�e��

k �
l
logB

r�m�

s

m
�

�� If k � �� let r� � r� s� � s � Bk� m�
� � m�� and

m�

� � m��

If k � �� let r� � r � B�k� s� � s� m�
� � m� � B�k�

and m�

� � m� �B�k�

Generate digits as follows�

d� �
j
r� �B

s�

k
r� � r� �B mod s� s� � s�

m�
� � m�

� �B m�

� � m�

� �B

d� �
j
r� �B

s�

k
r� � r� �B mod s� s� � s�

m�
� � m�

� �B m�

� � m�

� �B
���

���
���

Invariants�

�	� v �
rn

sn
�B

k�n �

nX
i��

di �B
k�i

���
v � v�

�
�

m�

n

sn
�B

k�n

�

e � � e � �

f �� bp�� f � bp�� e � min exp or f �� bp�� e � min exp and f � bp��

r f � be � � f � be�� � � f � � f � b� �

s � b� � b�e � � b�e�� � �

m� be be�� 	 b

m� be be 	 	

Table 	� Initial values of r� s� m�� and m�

���
v� � v

�
�

m�
n

sn
�B

k�n

�� Stop at the smallest n for which

�	� rn � m�

n � or

��� rn �m�
n � sn

If condition �	� is true and condition ��� is false� return

��d� � � � dn �Bk�

If condition ��� is true and condition �	� is false� return
��d� � � � dn���dn�	
�Bk�

If both conditions are true� return the number that
is closer to v� using some strategy to break ties� If
rn � � � sn� ��d� � � � dn � Bk is closer� If rn � � � sn�
��d� � � � dn���dn�	
�Bk is closer�

The invariants� which can be veri�ed by a straightfor�
ward proof by induction� are useful in establishing the equiv�
alence of this algorithm with the basic algorithm proved cor�
rect in Section ����
If the input routine�s tie�breaking algorithm is known� V

may be allowed to equal low or high or both� If low would
round up to v when input� termination condition �	� would
be rn � m�

n � If high would round down to v when input�
termination condition ��� would be rn � m�

n � sn� and k

would be the smallest integer such that r�m�

s
� Bk �i�e��

k � 	 �
j
logB

r�m�

s

k
��

For IEEE unbiased rounding� if the mantissa� f � is even�
then both low and high would round to v� otherwise� nei�
ther low nor high would round to v� For example� 	���

falls exactly between two IEEE �oating�point numbers� the
smaller of which has an even mantissa� thus� 	��� rounds
to the smaller when input� By accommodating unbiased
rounding� the algorithm prints this number as �e�� instead
of �����������������e���
Figure 	 gives Scheme code for the algorithm� It uses an

iterative algorithm �scale� similar to the one presented in �

to �nd k� It assumes the input routine uses IEEE unbiased
rounding� In the case of a tie in determining dn� it always
rounds up by choosing dn � 	� The function �onum�digits
returns a pair whose �rst element is k and whose second
element is the list of digits�

��� E�cient Scaling

Steele and White�s iterative algorithm requires O�j log vj�
high�precision integer operations to compute k� r�� s�� m

�
� �

and m�

� � An obvious alternative is to use the �oating�point
logarithm function to approximate k with dlogB ve and then

use an e�cient algorithm to compute the appropriate power
of B by which to multiply either s or r� m�� and m�� Be�
cause the �oating�point logarithm may be slightly smaller
or larger than the true logarithm� a small constant �chosen
to be slightly greater than the largest possible error� is sub�
tracted from the �oating�point logarithm so that the ceiling
of the result will be either k or k � 	� Consequently� the
estimate must be checked and adjusted by one if necessary�
Figure � shows Scheme code that �nds k and scales the

numbers using just a few high�precision integer operations�
The new scale procedure takes an additional argument� v�
The code uses a table to look up the value of 	�k for � � k �
��� which is su�cient to handle all IEEE double�precision
�oating�point numbers� It also uses a table to look up the
value of �

logB
for � � B � �� in order to speed up the

computation of logB v�
If the cost of the �oating�point logarithm function is

fairly high� it may be more e�cient to compute a less accu�
rate approximation to the logarithm� Because in almost all
�oating�point representations the input base� b� is two �or a
power of two�� we assume that b � � for our discussion of
logarithm estimators� We also assume that B � �� because
there is no reason to use a conversion algorithm if the output
base is the same as the input base�
Since v � f � �e� log� v � log� f � e� If we compute

the integer s and �oating�point number x such that v �
x � �s and 	 � x � �� we get log� v � log� x � s� where
� � log� x � 	� In other words� s is the integer part of
the base�� logarithm of v� Let len�f� be the length of f in
bits� Then s � e� len�f��	� For normalized �oating�point
numbers� we have s � e� p� 	�

In order to estimate logB v �
log� v

log� B
� we use s

log� B
� This

estimate never overshoots logB v� and it undershoots by no
more than �

log� �
� ����	� Once again� �oating�point arith�

metic does not compute the exact value of s
log� B

� so we sub�

tract a small constant in order to preserve the property that
the estimate never overshoots� Assuming the estimate is
computed using IEEE double�precision �oating�point arith�
metic� �

log� B
can be represented with an error of less than

	����� Since s is between�	��� and 	���� the �oating�point
result of s� �

log� B
has an error of less than 	����� Because

our estimate never overshoots k and the error is less than

one�
l

s
log� B

m
is k or k � 	� This result also holds if k is

	 �
j
logB

r�m�

s

k
�

Whereas the �oating�point logarithm estimate was al�
most always k� our simpler estimate is frequently k � 	�
Having the estimate o� by one introduces extra overhead�
but this overhead can be eliminated� When the estimate is
k � 	� �xup multiplies s by B and then calls generate to

�

�de�ne �onum�digits
�lambda �v f e min�e p b B�
�let ��round� �even� f �
�
�if ��� e ��
�if �not �� f �expt b �� p 	����
�let ��be �expt b e�
�
�scale �� f be �� � be be � B round� round���
�let� ��be �expt b e�
 �be� �� be b�
�
�scale �� f be� �� �� b �� be� be � B round� round����

�if �or �� e min�e� �not �� f �expt b �� p 	�����
�scale �� f �� �� �expt b �� e�� �� 	 	 � B round� round� �
�scale �� f b �� �� �expt b �� 	 e�� �� b 	 � B round� round� ������

�de�ne scale
�lambda �r s m� m� k B low�ok� high�ok��
�cond
���if high�ok� �� �� �� r m�� s� � k is too low
�scale r �� s B� m� m� �� k 	� B low�ok� high�ok� �

���if high�ok� � ��� �� �� r m�� B� s� � k is too high
�scale �� r B� s �� m� B� �� m� B� �� k 	� B low�ok� high�ok��

�else � k is correct
�cons k �generate r s m� m� B low�ok� high�ok� ��
���

�de�ne generate
�lambda �r s m� m� B low�ok� high�ok��
�let ��q�r �quotient�remainder �� r B� s�

�m� �� m� B�

�m� �� m� B�
�

�let ��d �car q�r�

�r �cdr q�r�
�

�let ��tc� ��if low�ok� �� �� r m��

�tc� ��if high�ok� �� �� �� r m�� s�
�

�if �not tc� �
�if �not tc� �
�cons d �generate r s m� m� B low�ok� high�ok� ��
�list �� d 	���

�if �not tc� �
�list d�
�if �� �� r �� s�
�list d�
�list �� d 	����������

Figure 	� Scheme code that implements the basic conversion algorithm with an iterative scaling procedure and IEEE unbiased
rounding �round to even�� For other rounding modes� scale and generate may be called with di�erent values for low�ok� and
high�ok� �

generate the digits� On entry to generate� r� m�� and m�

are multiplied by B� By moving these multiplications back
into the call sites of generate� the multiplications can be
eliminated in �xup when the estimator returns k � 	� The
result is that there is no penalty for an estimate that is o�
by one� Figure � gives a Scheme implementation of our es�
timator and the modi�ed digit�generation loop� It modi�es
the original scale function to take additional arguments f
and e� and it uses a table to look up the value of �

log� B
for

� � B � ���
Table � gives the relative CPU times for Steele and

White�s iterative scaling algorithm �
 and the �oating�point
logarithm scaling algorithm with respect to our simple es�
timate and scaling algorithm� The timings were performed
using Chez Scheme on a DEC AXP ���� running Digital
UNIX V���C� The input was a set of ������ positive nor�

Scaling Algorithm Relative CPU Time

Steele � White ����

�oating�point log 	���

log approximation 	���

Table �� Relative CPU times for three di�erent scaling al�
gorithms

malized IEEE double�precision �oating�point numbers� and
the output base was ten� This set was generated accord�
ing to the forms Schryer developed for testing �oating�point
units ��
� As expected� the timings show that the iterative
scaling algorithm is almost two orders of magnitude slower
than either estimate�based algorithm�

�de�ne scale
�lambda �r s m� m� k B low�ok� high�ok� v�
�let ��est �inexact�exact �ceiling �� �logB B v� 	e�	����
�
�if ��� est ��
��xup r �� s �exptt B est�� m� m� est B low�ok� high�ok��
�let ��scale �exptt B �� est��
�
��xup �� r scale� s �� m� scale� �� m� scale� est B low�ok� high�ok� ������

�de�ne �xup
�lambda �r s m� m� k B low�ok� high�ok��
�if ��if high�ok� �� �� �� r m�� s� � too low�
�cons �� k 	� �generate r �� s B� m� m� B low�ok� high�ok� ��
�cons k �generate r s m� m� B low�ok� high�ok� �����

�de�ne exptt
�let ��table �make�vector ����
�
�do ��k � �� k 	�
 �v 	 �� v 	��
�
��� k �����
�vector�set� table k v��

�lambda �B k�
�if �and �� B 	�� ��� � k ����
�vector�ref table k�
�expt B k�����

�de�ne logB
�let ��table �make�vector ���
�
�do ��B � �� B 	�
�
��� B ����
�vector�set� table B �� �log B����

�lambda �B x �
�if ��� � B ���
�� �log x� �vector�ref table B��
�� �log x� �log B������

Figure �� Scheme code that uses the �oating�point logarithm function to estimate k and then adjusts the result to the exact
value of k

� Fixed�Format Output

Up to this point we have addressed the free�format output
problem� We now describe how to modify the basic algo�
rithm to generate �xed�format output� A key property of
the output conversion algorithm is its use of the rounding
range of v� determined by computing v� and v�� For �xed�
format output� this range is conditionally modi�ed to indi�
cate the requested precision� If a �oating�point number has
enough precision to be printed to the given digit position�
the rounding range is expanded so that the output will stop
at the given position� If a �oating�point number has insu��
cient precision� the rounding range is not expanded� and the
output will contain � marks past the last signi�cant digit�
There are two ways of specifying how many digits to

print in �xed�format mode� by absolute digit position and
by relative digit position� An absolute digit position is the
distance from the radix point in base�B digits at which one
wants the output to stop� A relative digit position is the
number of base�B digits to print�
Suppose an absolute digit position is given� Let j be

the digit position and v be a positive �oating�point number�
In order for the output� V � to be correctly rounded� v �
Bj

�
� V � v � Bj

�
� Because of the gaps in the �oating�

point representation� all numbers between v��v
�
and v�v�

�

are indistinguishable from v� The algorithm uses the larger
range in order to determine when to stop generating digits�

In other words� let low be the lesser of v��v
�
and v � Bj

�
�

and let high be the greater of v�v
�

�
and v � Bj

�
�

After low and high are computed� the scaling factor k is
determined as before� If the end point high is in the rounding

range �i�e�� if high � v � Bj

�
�� k is the smallest integer such

that high � Bk� i�e�� k � 	�blogB highc� Otherwise� k is the
smallest integer such that high � Bk� i�e�� k � dlogB highe�
The digits are generated as before� Termination condi�

tion �	� is extended to include equality when the end point
low is in the rounding range� Similarly� termination condi�
tion ��� is extended to include equality when the end point
high is in the rounding range�
Let n be the smallest integer for which one of the ter�

mination conditions holds� As before� digit dn is incre�
mented when ��d� � � � dn���dn�	
 � Bk is closer to v than

��d� � � � dn�Bk �or possibly in the case of a tie�� If j � k�n�
the algorithm stopped at the desired digit position� so the
algorithm simply returns the result� Because of the way
we de�ned the termination conditions� the algorithm cannot
generate too many digits� Therefore� if j �� k�n� j � k�n�
so the algorithm must generate the remaining digits�
Unfortunately the algorithm cannot simply print �marks

�

�de�ne scale
�lambda �r s m� m� k B low�ok� high�ok� f e�
�let ��est �inexact�exact �ceiling �� �� �� e �len f � �	� �invlog�of B�� 	e�	����
�
�if ��� est ��
��xup r �� s �exptt B est�� m� m� est B low�ok� high�ok� �
�let ��scale �exptt B �� est��
�
��xup �� r scale� s �� m� scale� �� m� scale� est B low�ok� high�ok� ������

�de�ne �xup
�lambda �r s m� m� k B low�ok� high�ok��
�if ��if high�ok� �� �� �� r m�� s� � too low�
�cons �� k 	� �generate r s m� m� B low�ok� high�ok� ��
�cons k �generate �� r B� s �� m� B� �� m� B� B low�ok� high�ok������

�de�ne generate
�lambda �r s m� m� B low�ok� high�ok� �
�let ��q�r �quotient�remainder r s�
�
�let ��d �car q�r�

�r �cdr q�r�
�
�let ��tc� ��if low�ok� �� �� r m��

�tc� ��if high�ok� �� �� �� r m�� s�
�
�if �not tc� �
�if �not tc� �
�cons d �generate �� r B� s �� m� B� �� m� B� B low�ok� high�ok� ��
�list �� d 	���

�if �not tc� �
�list d�
�if �� �� r �� s�
�list d�
�list �� d 	����������

�de�ne invlog�of
�let ��table �make�vector ���

�log� �log ��
�
�do ��B � �� B 	�
�
��� B ����
�vector�set� table B �� log� �log B����

�lambda �B�
�if ��� � B ���
�vector�ref table B�
�� log� �log B������

Figure �� Scheme code that uses our fast estimator and modi�ed digit�generation loop

from here until position j� Suppose 	�� were printed to
absolute position �� for example� Termination condition �	�
would hold after generating the �rst digit� but the remaining
digit positions are signi�cant and must therefore be zero�
not �� Consequently� the algorithm must generate zeroes
as long as they are signi�cant and then generate � marks�
A digit is insigni�cant when it and all the digits after it
can be replaced by any base�B digits without altering the
value of the number when input� In other words� a digit
is insigni�cant if incrementing the preceding digit does not
cause the number to fall outside the rounding range of v�

If low � v � Bj

�
and high � v � Bj

�
� the remaining

digit positions are all signi�cant� so the algorithm �lls them
with zeroes and returns� Otherwise� the precision of the
output is limited by the �oating�point representation� The
algorithm generates zeroes until incrementing the preced�
ing digit would result in a number less than or equal to
high� at which point it �lls the remaining digit positions

with � marks� For example� when printing 	�� in IEEE
double�precision to digit position ���� the algorithm prints
�������������������������
Now suppose a relative position is given instead� Let

i � � be the number of digits requested� In order to compute
the corresponding absolute digit position� j� the algorithm
�rst computes the absolute position of the �rst digit� Unfor�
tunately� the position of the �rst digit� k�	� may depend on
the upper bound of the rounding range of v� which in turn
may depend on j� This cycle is resolved by using an initial
estimate for k that does not depend on j and then re�ning

it when necessary� The initial estimate� �k� is
l
logB

v�v�

�

m
�

which can be computed e�ciently using the techniques de�

scribed in Section ���� If v�
B

	k�i

�
� B

	k� the initial estimate

was correct� so k � �k� otherwise� the initial estimate was o�

by one� so k � �k � 	� At this point the algorithm proceeds

�

System
Free

Fixed

Fixed

printf
Incorrect

Alpha AXP 	��� ���� ���

HP ���� 	��	 ��	� �	�

Linux 	��� ��� �

RS����� 	�� ���� �

SGI �� 	��	 ��� 	��

SGI �� 	��	 ��	� ����

Solaris 	�� ���� �

Sun�c 	��� ��� �

Sun�d 	��� ���� �

Geom� mean 	��� 	�	 N�A

Key�
Alpha AXP DEC AXP ����� Digital UNIX V���C
HP ���� HP ������	�E� HP�UX A�����
Linux AMD �����DX����� Linux 	�����

RS����� IBM RS����� ��	����� AIX ���
SGI �� SGI IP��� IRIX ��
SGI �� SGI IP�	� IRIX�� ��	
Solaris Sun SPARCstation �� SunOS � �Solaris�
Sun�c Sun SPARCstation �� SunOS ��	��
Sun�d Sun SPARCstation � SunOS ��	��

Table �� Ratio of CPU time for free�format versus straight�
forward �xed�format� �xed�format versus printf� and the
count of incorrectly rounded output from printf on ������
�oating�point numbers

as though it were given the absolute digit position k � i�
The rational arithmetic used in �xed�format printing can

be converted into high�precision integer arithmetic by intro�
ducing a common denominator as before� Because there are
several more cases to consider� however� the resulting code
is lengthy and has therefore been omitted from this paper�

	 Conclusion

We have developed an e�cient algorithm for converting
�oating�point numbers from an input base to an output
base� For free�format output� it provably generates the
shortest� correctly rounded number that rounds to the orig�
inal �oating�point number when input� taking the input tie�
breaking rounding algorithm into account if desired� For
�xed�format output� it generates a correctly rounded num�
ber with � marks in the place of insigni�cant trailing dig�
its� These � marks are useful when the requested number
of digits may exceed the internal precision� Our algorithm
employs a fast estimator to compute scaling factors� By
modifying our algorithm slightly� we eliminated the penalty
of having the estimate o� by one� which enabled us to make
our estimator very inexpensive�
We have compared an implementation of our free�format

algorithm for base�	� output against an implementation of
a straightforward �xed�format algorithm on several di�er�
ent systems� For this test� we used a set of ������ posi�
tive normalized IEEE double�precision �oating�point num�
bers ��
� The �xed�format algorithm printed them to 	�
signi�cant digits� the minimum number guaranteed to dis�
tinguish among IEEE double�precision numbers� In all cases
the numbers were printed to 	dev	null in order to factor

out I�O performance� The average number of digits needed
is 	��� so the free�format algorithm has no particular ad�
vantage over the �xed�format algorithm�
Table � shows that our free�format algorithm takes ��!

more CPU time on average than the straightforward �xed�
format algorithm� To provide a basis of comparison against
a standard �xed�format algorithm for each system� the ta�
ble also compares the C library�s printf function against the
straightforward �xed�format algorithm and gives the num�
ber of �oating�point numbers that were rounded incorrectly
by printf� For the systems where printf is considerably
faster� we suspect that our implementation could be tuned
to achieve comparable results� �In particular� our current
implementation uses ���bit arithmetic and performs poorly
on systems without e�cient ���bit support�� While the cost
of free�format output may be signi�cant for some applica�
tions� the cost is justi�ed for many others by the reduced
verbosity of free�format output�
Our algorithm is based on Steele and White�s conversion

algorithm �
� Ours is dramatically more e�cient� primar�
ily due to our use of a fast estimator for computing scaling
factors� Their algorithm does not distinguish between signif�
icant and insigni�cant trailing zeros� nor does it take into ac�
count input rounding modes� In addition� their �xed�format
algorithm introduced a slight inaccuracy in the computation
of the rounding range�
David Gay independently developed an estimator similar

to ours ��
� It uses the �rst�degree Taylor series to estimate
log�� v� Although our estimator is less accurate than his�
it is less expensive as well� requiring two rather than �ve
�oating�point operations� Furthermore� since our scaling
algorithm incurs no additional overhead when the estimate
is o� by one� the loss of accuracy is unimportant� and scaling
is more e�cient in all cases�
Gay also developed an excellent set of heuristics for de�

termining when more e�cient digit�generation techniques
can be employed for �xed�format output� In particular� he
showed that �oating�point arithmetic is su�ciently accurate
in most cases when the requested number of digits is small�
The �xed�format printing algorithm described in this paper
is useful when these heuristics fail�
An implementation of the algorithms described in this

paper is available from the authors� A version of the free�
format algorithm has been used in Chez Scheme since 	����
in fact� the ANSI�IEEE Scheme standard requirement for
accurate� minimal�length numeric output and the desire to
do so as e�ciently as possible in Chez Scheme motivated the
work reported here�

References

�	
 William D� Clinger� How to read �oating�point numbers
accurately� ACM SIGPLAN 	
� Conference on Program�
ming Language Design and Implementation� �������"
	�	� June 	����

��
 David M� Gay� Correctly rounded binary�decimal
and decimal�binary conversions� Numerical Analysis
Manuscript ���	�� AT�T Bell Laboratories� Murray
Hill� New Jersey ������ November 	����

��
 IEEE standard for binary �oating�point arithmetic�
ANSI�IEEE Std ���	��� Institute of Electrical and
Electronics Engineers� New York� 	���

�

��
 N� L� Schryer� A test of a computer�s �oating�point arith�
metic unit� In W� Cowell� editor� Sources and Develop�
ment of Mathematical Software� Prentice�Hall� 	��	�

�
 Guy L� Steele Jr� and Jon L� White� How to print
�oating�point numbers accurately� ACM SIGPLAN 	
�
Conference on Programming Language Design and Im�
plementation� �����		�"	��� June 	����

A Proofs of Correctness

This section presents correctness proofs of the free�format
printing algorithm described in Section ���� See Section ���
for a less formal presentation�

Theorem �� Each di is a valid base�B digit� d� � �� and if
dn is incremented� no carry is generated�

Proof� � � q� �
v

Bk � 	 since � � v � high � Bk�
For i � 	� � � qi � 	 by de�nition� Thus for all i � ��
� � qi �B � B� so di�� � bqi �Bc is a valid base�B digit�
Suppose d� � �� Then ���d��	
 � Bk � Bk�� � high

by the minimality of k� so termination condition ��� holds�
Termination condition �	� cannot hold since ��d� �Bk � ��
Thus digit d� will be incremented to 	�
Suppose d� � B � 	� Then ���d��	
�Bk � Bk � high �

so termination condition ��� will not hold� and digit d� will
not be incremented�
Assume by way of contradiction that �nal digit dn �n �

	� is incremented to B� which would introduce a carry� Then
��d� � � � dn���dn�	
 � Bk � ��d� � � � dn���dn���	
 � Bk �
high� so termination condition ��� would have held at step
n� 	� a contradiction� �

Lemma �� v � qn �Bk�n �

nX
i��

di �B
k�i

Proof� By induction on n�

Basis� v � q� �Bk by de�nition of q��

Induction� Suppose the result holds for n�

v � qn �Bk�n �

nX
i��

di �B
k�i

� �qn �B��Bk�
n��� �

nX
i��

di �B
k�i

� �bqn �Bc� fqn �Bg��Bk�
n��� �
nX
i��

di �B
k�i

� �dn�� � qn����Bk�
n��� �

nX
i��

di �B
k�i

� qn�� �Bk�
n��� �

n��X
i��

di �B
k�i

�

Corollary� The following conditions are equivalent to the
termination conditions�

�	� qn �Bk�n � v � low

��� �	� qn��Bk�n � high � v

Theorem �� �Information Preservation� The algorithm al�
ways terminates with low � V � high�

Proof� By Lemma �� termination condition �	� is equivalent
to qn � Bk�n � v � low � Since � � qn � 	� the left�hand
side becomes arbitrarily small as n increases� so there will
be some n for which the algorithm terminates�
Suppose the algorithm stops at point n� There are two

cases to consider�

	� V � ��d� � � � dn �Bk � low

By Lemma �� V � v � qn � Bk�n� Since � � qn � 	�
low � V � v � high�

�� V � ��d� � � � dn���dn�	
 �Bk � high

By Lemma �� V � v��	�qn��B
k�n� Since � � qn � 	�

low � v � V � high�

In both cases low � V � high� �

Theorem �� �Correct Rounding� jV � vj �
Bk�n

�

Proof� There are two cases to consider�

	� V � ��d� � � � dn �Bk

Since dn was not incremented� ��d� � � � dn���dn�	
�Bk

was no closer to v than V �
Thus ��d� � � � dn���dn�	
�Bk�v � �V �Bk�n�� v �

v � V � which is equivalent to v � V �
Bk�n

�
�

�� V � ��d� � � � dn���dn�	
 �Bk

Since dn was incremented� ��d� � � � dn�B
k was no closer

to v than V � Thus v � ��d� � � � dn � Bk � v � �V �

Bk�n� � V � v� which is equivalent to V � v �
Bk�n

�
�

In both cases jV � vj �
Bk�n

�
� �

Theorem 	� �Minimum�Length Output� There is no �n�
	��digit base�B number V � such that low � V � � high�

Proof� Assume by way of contradiction that V � ex�
ists� By Lemma �� v � ��d� � � � dn�� � Bk � qn�� �

Bk�
n���� so v � ��d� � � � dn�� � Bk � Bk

Bn�� and

��d� � � � dn���dn���	
�Bk�v � Bk

Bn�� � Thus ��d� � � � dn���

Bk and ��d� � � � dn���dn���	
�B
k are the two closest �n�	��

digit base�B numbers to v�� Consequently� there are two
cases to consider�

	� V � � ��d� � � � dn�� �Bk

Since the algorithm did not stop at point n � 	� V � �
��d� � � � dn�� �� low � a contradiction�

�� V � � ��d� � � � dn���dn���	
�Bk

Since the algorithm did not stop at point n � 	� V � �
��d� � � � dn���dn���	
�Bk �� high� a contradiction�

�

�Note that if incrementing the last digit introduces a carry� the
resulting number may extend to the left by one digit� This does not
cause a problem� however� since the last digit would be � and can be
eliminated�

�

