
EFFICIENT COMPILATION AND PROFILE-DRIVEN

DYNAMIC RECOMPILATION IN SCHEME

Robert G. Burger

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science,

Indiana University

March 1997



Accepted by the faculty of the University Graduate School, Indiana

University, in partial fulfillment of the requirements for the degree Doc-

tor of Philosophy

R. Kent Dybvig, Ph.D.
(Principal Adviser)

Daniel P. Friedman, Ph.D.

Franklin P. Prosser, Ph.D.

Bloomington, Indiana

February 14, 1997 Lawrence S. Moss, Ph.D.

ii



Copyright c©1997

Robert G. Burger

ALL RIGHTS RESERVED

iii



Acknowledgments

You are worthy, our Lord and God,

to receive glory and honor and power,

for you created all things,

and by your will they were created

and have their being.

Revelation 4:11

First and foremost I thank Jesus, my King and Redeemer, who graciously enabled

me to complete this dissertation by providing the support acknowledged below.

I am very grateful to Kent Dybvig, my outstanding research adviser, for his good

ideas, advice, and encouragement. I also appreciate the excellent teaching and support

that Dan Friedman, Frank Prosser, and Larry Moss have given me.

I thank the National Science Foundation for supporting me for three years on a

graduate fellowship and for a year as a research assistant. I also appreciate the Com-

puter Science Department’s support, especially the invaluable experience as associate

instructor for the Scheme compiler classes.

I appreciate Oscar Waddell’s help, especially his contributions to register alloca-

tion, source-object correlation, and graphical display of data.

I am grateful to Claude Anderson for all his encouragement, especially for con-

vincing me that I really could and should complete this dissertation!

I thank my parents, Ron and Dianne Burger, and especially my wife, Stacy, for

their unwavering support and love, for listening to me, for encouraging me, and for

helping me keep things in perspective.

iv



Abstract

This dissertation presents a fast and effective linear intraprocedural register allocation

strategy and an infrastructure for profile-driven dynamic recompilation in Scheme.

The register allocation strategy optimizes register usage across procedure calls. It

capitalizes on our observation that while procedures that do not contain calls (syn-

tactic leaf routines) account for under one third of all procedure activations, proce-

dures that actually make no calls (effective leaf routines) account for over two thirds

of all procedure activations. Well-suited for both caller- and callee-save registers, our

strategy employs a “lazy” save mechanism that avoids saves for all effective leaf rou-

tines, an “eager” restore mechanism that reduces the effect of memory latency, and a

“greedy” register shuffling algorithm that does a remarkably good job of minimizing

the need for temporaries in setting up procedure calls.

The infrastructure for profile-driven dynamic recompilation enables the run-time

system to recompile procedures—even while they are executing—using dynamically

collected profile data. In current programming environments, profile-based recompi-

lation requires a tedious compile-profile-recompile cycle. In our system, the instru-

mentation for profiling and the subsequent recompilation are done at run time. As

a proof of concept, edge-count profile data is used to reorder basic blocks to reduce

the number of mispredicted branches and instruction cache misses. Our low-overhead

profiling strategy supports first-class continuations and reinstrumentation of active

procedures. It includes a fast and effective linear static edge-count estimator that

v



accurately predicts common run-time checks. In addition, this dissertation demon-

strates how the profile data can be graphically associated with the original source to

provide useful feedback to programmers.

vi



Contents

Acknowledgments iv

Abstract v

1 Introduction 1

1.1 Register Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Edge-Count Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Dynamic Recompilation . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Register Allocation 11

2.1 Background and Overview . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Save and Restore Placement . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Lazy Save Placement . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Eager Restore Placement . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Greedy Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Callee-Save Registers . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Pass 1: Save Placement . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Pass 2: Save Elimination and Restore Placement . . . . . . . . 26

2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Edge-Count Profiling 34

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Control-Flow Aberrations . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Static Edge-Count Estimator . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Graphical Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Dynamic Recompilation 61

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Object Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Block Reordering Example . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusions 82

Bibliography 86

viii



List of Tables

1 Description of register allocation benchmarks . . . . . . . . . . . . . . 14

2 Dynamic call graph summary . . . . . . . . . . . . . . . . . . . . . . 15

3 Reduction of stack references and resulting performance increase for

three different save strategies . . . . . . . . . . . . . . . . . . . . . . 29

4 Performance comparison of Chez Scheme against the GNU and Alpha

OSF/1 optimizing C compilers for tak(26, 18, 9) . . . . . . . . . . 30

5 Execution times of optimized C code for tak(26, 18, 9) . . . . . . 30

6 Description of profiling benchmarks . . . . . . . . . . . . . . . . . . . 56

7 Relative costs of edge-count profiling . . . . . . . . . . . . . . . . . . 57

8 Relative costs of profiling as in Table 7 but without support for first-

class continuations and reinstrumentation of active procedures . . . . 58

9 Performance of dynamic recompilation using block reordering . . . . . 78

ix



List of Figures

1 Save placement graphs and equations for boolean operators . . . . . . 19

2 Abbreviated control-flow graphs for three restore scenarios . . . . . . 20

3 remq source, sample trace, basic blocks, and control-flow graph . . . . 37

4 A loop-free Scheme function whose control-flow graph requires more

than one count per entry . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Source and basic blocks for fact , a program demonstrating the effects

of nonlocal exit and re-entry on edge counts . . . . . . . . . . . . . . 40

6 Trace and control-flow graphs illustrating nonlocal exit from fact with

and without an exit edge . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Trace and control-flow graphs illustrating re-entry into fact with and

without an exit edge . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Efficient instrumentation of edge e from block A to block B . . . . . 44

9 Control-flow graph segments showing a checked nontail procedure call

with two placement strategies for the exit and multiple-value return

edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10 Scheme code for the static edge-count estimator . . . . . . . . . . . . 49

11 A Scheme function with an internal loop and its associated control-flow

graph weighted by the static edge-count estimator . . . . . . . . . . . 51

12 A pattern matcher displayed using different colors for different execu-

tion frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

x



13 Representations of closures, code objects, and stack segments without

the infrastructure for dynamic recompilation . . . . . . . . . . . . . . 66

14 Representations of closures, code objects, and stacks with the infras-

tructure for dynamic recompilation highlighted . . . . . . . . . . . . . 69

15 Adding branch prediction preferences for architectures that predict

backward conditional branches taken and forward conditional branches

not taken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xi



Chapter 1

Introduction

This dissertation presents a fast and effective linear intraprocedural register allocation

strategy and an infrastructure for profile-driven dynamic recompilation in Scheme.

The register allocation strategy optimizes register usage across procedure calls. This

area of optimization is particularly important for languages in which procedure calls

rather than explicit looping constructs are used as the basis for control.

The infrastructure for dynamic recompilation enables the run-time system to re-

compile procedures, even while they are executing. In order for recompilation to

produce code improvements, some dynamic information unavailable at compile time

must be employed. As a proof of concept, this dissertation uses edge-count profile

data to provide the basis for dynamic recompilation that optimizes profile counter

placement and minimizes the number of mispredicted branches and instruction cache

misses by reordering basic blocks.

The low-overhead edge-count profile strategy supports first-class continuations and

reinstrumentation of active procedures. It employs a fast log-linear algorithm that

determines optimal counter placement and a fast linear static edge-count estimator

that significantly improves initial counter placement. In addition, this dissertation

describes a graphical viewer that allows programmers to view the profile data in terms

1



CHAPTER 1. INTRODUCTION 2

of the original source.

The remainder of this chapter is organized as follows. The next section gives an

overview of our register allocation strategy. Section 1.2 gives an overview of edge-

count profiling and graphical display of the data. Section 1.3 gives an overview of

the infrastructure for dynamic recompilation using basic block reordering as a proof

of concept.

The remainder of this dissertation is organized similarly. Chapter 2 describes our

register allocation strategy. Chapter 3 presents our low-overhead edge-count profiling

strategy and describes how the profile data can be graphically associated with the

original source. Chapter 4 demonstrates the feasibility and utility of dynamic recom-

pilation by applying profile data to reorder basic blocks and optimize profile counter

placement. The final chapter summarizes the contributions of this dissertation and

lists areas for future work.

1.1 Register Allocation

Chapter 2 presents our fast and effective linear intraprocedural register allocation

strategy that optimizes register usage across procedure calls. It capitalizes on the

observation that while procedures that do not contain calls (syntactic leaf routines)

account for under one third of all procedure activations, procedures that actually make

no calls (effective leaf routines) account for over two thirds of all procedure activations.

Well-suited for both caller- and callee-save registers, our strategy employs a “lazy”

save mechanism that avoids saves for all effective leaf routines, an “eager” restore

mechanism that reduces the effect of memory latency, and a “greedy” register shuffling

algorithm that does a remarkably good job of minimizing the need for temporaries in

setting up procedure calls.



CHAPTER 1. INTRODUCTION 3

Traditional save placement involves two extremes. On the one hand, the callee-

save registers used in a procedure are saved on entry to the procedure. On the other

hand, the caller-save registers containing information needed after a call are saved

just before the call. The former strategy saves “too early” in the sense that some

registers may be saved even though there is a path through the procedure that does

not use them. The latter strategy saves “too late” in the sense that it may introduce

redundant saves when a path contains multiple calls.

Our strategy avoids both extremes by saving registers only when a call is inevitable

(not too early) and as soon as a call is inevitable (not too late). This lazy save strategy

benefits the large class (approximately one third) of procedure activations that make

no calls even though their procedure bodies contain calls, and it does not unduly

penalize procedure activations that make multiple calls.

The save placement algorithm is based on a recursive definition of the set of

registers to save around an expression. The algorithm avoids placing saves too early

by taking the intersection of the save sets for the “then” and “else” branches of if

statements. It avoids placing saves too late by propagating the save sets up the

control-flow graph using the union operator.

Because Scheme uses if expressions to express short-circuit boolean operations

such as and and or, the save placement algorithm must be sensitive to conditionals

and constants, especially when they occur in a conditional context. Consider the

expression (if (and x (f )) y (g)), which expands to (if (if x (f ) #f) y (g)). Every

path through this expression makes a procedure call. A simple lazy save strategy,

however, would be fooled into thinking that the call-free path from x to #f to y can

occur. Consequently, it will not propagate the saves as desired.

To correct this deficiency, the save placement algorithm divides the register save

sets into the two classes used by if statements: true and false. The distinction allows

the algorithm to have a more precise notion of the paths through the control-flow



CHAPTER 1. INTRODUCTION 4

graph. Along a given path it takes the union of the registers that need to be saved.

Then it takes the intersection of all the paths to determine the registers that need

to be saved regardless of the path taken. For example, if #f is used in a conditional

context, its true save set is defined to be the identity under intersection so that the

impossible path down the “then” branch does not unnecessarily restrict the save set

for the entire if.

Using the same “as soon as but no sooner than necessary” principle, we tried a

lazy restore placement strategy. We compared the performance results against the

simpler, straightforward eager restore placement strategy of immediately restoring

any register possibly referenced before the next call. Even though the eager strategy

results in unnecessary restores, it produced code that ran just as fast as the code

produced by the lazy strategy. We concluded that the reduced effect of memory

latency offsets the cost of unnecessary restores, and latency continues to get worse as

processors become faster and memory hierarchies become deeper. We therefore use

the eager restore strategy.

When setting up arguments to a call, the new argument values may depend on the

old argument values; thus, argument register shuffling is sometimes necessary. For

example, the call to f in (lambda (x y) (f y x )) requires a swap of the registers for x

and y . By not fixing the order of evaluation for arguments before register allocation,

the compiler can determine an ordering that requires a minimal amount of shuffling,

and sometimes it can avoid shuffling altogether.

Our shuffling algorithm first partitions the arguments into those that contain calls

(complex ) and those that do not (simple). We use temporary stack locations for all

but the last of the complex arguments, since making a call would cause the previous

arguments to be saved on the stack anyway. We pick as the last complex argument

one on which none of the simple arguments depend (if such a complex argument

exists), since it can be evaluated directly into its argument register.



CHAPTER 1. INTRODUCTION 5

Ordering the simple arguments is a problem of optimizing parallel assignments,

as noted in [20, 29]. We build the dependency graph and essentially perform a topo-

logical sort. If we detect a cycle, we find the argument causing the largest number of

dependencies and remove it, placing it into a temporary location, in hopes of breaking

the cycle. We then continue the process until all arguments have been processed. This

“greedy” approach to breaking cycles may not always result in the minimal number

of temporaries, but we have observed that it finds the optimal ordering for a vast

majority of call sites.

1.2 Edge-Count Profiling

Chapter 3 extends the optimal edge-count profiling strategy described by Ball and

Larus [4] to support first-class continuations and reinstrumentation of active proce-

dures. Our strategy employs a fast log-linear algorithm to determine optimal counter

placement, and it significantly improves initial counter placement using a fast linear

static edge-count estimator. The profile data is used for two purposes. The primary

application is for the dynamic recompiler, which uses the data to perform run-time

optimizations such as basic block reordering and to minimize the overhead of profiling

by optimizing counter placement. The secondary application is for the programmer,

who can display that data with a graphical annotation of the original source.

Edge-count profiling is based on the concept of a basic block, a sequential list of

instructions for which control enters only at the top and exits only at the bottom. A

procedure is composed of one or more basic blocks, depending on its control structure.

The branches in a procedure determine how the blocks are connected. Consequently,

the entire procedure can be viewed as a directed graph whose nodes are the basic

blocks and whose edges come from the branches.

The goal of edge-count profiling is to measure the number of times each edge in



CHAPTER 1. INTRODUCTION 6

the control-flow graph is executed. Because this information is directly related to the

branches, it is ideally suited for branch prediction and block reordering. In addition,

the number of times each basic block is executed, which can be readily computed from

the edge counts, can be associated with the original source to give the programmer

feedback.

Ball and Larus augment the control-flow graph with an explicit exit node to ac-

count for all possible control-flow paths [4]. As a result, the control-flow graph satisfies

the conservation of flow property. This key property allows them to use a maximal

spanning tree to avoid placing counters on the most frequently executed edges. In-

stead, the counts for these edges are computed after a program run from the counts

of the instrumented edges.

The conservation of flow property is met only under the assumption that each

procedure call returns exactly once. First-class continuations, however, cause some

procedure activations to exit prematurely and others to be reinstated one or more

times. Even when there are no continuations, reinstrumenting a procedure while it

has activations on the stack is problematic because some of its calls have not returned

yet.

Ball and Larus handle the restricted class of exit-only continuations by adding

to each call block an edge pointing to the exit block [4]. They measure the counts

of exit edges directly by modifying continuation invocation to account for aborted

activations. Their strategy can be extended to support fully general continuations

by modifying continuation invocation to account for reinstated activations as well as

aborted ones. We use a similar strategy, but to avoid the linear stack walk that would

destroy constant-time continuation invocation, we measure the counts indirectly by

ensuring that exit edges are on the spanning tree.

When a procedure is compiled for the first time, all its edge counts are zero, so

the maximal spanning tree algorithm finds a spanning tree that may be far from



CHAPTER 1. INTRODUCTION 7

maximal when the procedure actually executes. Our static estimator significantly

improves initial counter placement by simulating profile data. It correctly predicts

the behavior of common run-time tests such as heap and stack overflow, identifies and

predicts internal loops, and assumes all other tests have a 50% chance of succeeding.

Unlike Ball and Larus’s estimator [4], it is linear in the number of basic blocks and does

not require the control-flow graph to be reducible. It capitalizes on the observation

that the counts of the control-flow graph need not satisfy the conservation of flow

property to determine counter placement.

The estimator performs a depth-first traversal of the control-flow graph to identify

and mark the back edges (internal loops) and to determine a block ordering used to

propagate the weights. Using this block ordering, the algorithm then processes each

block, computing the total of the incoming flow and dividing it among the outgoing

edges. When the algorithm recognizes a block that performs a common run-time

test, it divides the flow to favor the outgoing edge that is more likely to be executed.

Otherwise, it divides the flow evenly. The conservation of flow property is violated

only when there are back edges.

Even though edge counts are at just the right level for the recompiler, they are at

too low a level for the programmer, who would prefer to see them in terms of the orig-

inal source. Consequently, we modified our system’s macro expander to collect source

information and propagate it through macro expansion. This information is further

propagated through the various passes of the compiler until it finally appears as spe-

cial assembly-language pseudo-instructions. These pseudo-instructions are stored in

the basic block structures so that the block counts can be associated with the original

source. The Scheme Widget Library [46] provides the tools necessary to display the

source with graphical annotations of the counts.



CHAPTER 1. INTRODUCTION 8

1.3 Dynamic Recompilation

Chapter 4 describes an infrastructure for dynamic recompilation in Scheme using

the example of basic block reordering based on edge-count profile data. Because in

Scheme the garbage collector can find and relocate all references to any given object,

it is ideally suited for completely and transparently replacing a procedure with a new-

and-improved version of it. As a result, procedures can be recompiled at run time,

even when they have activations on the stack or in captured continuations.

To demonstrate the feasibility and utility of dynamic recompilation, we employ a

well-established optimization, basic block reordering [14, 35, 36]. Current computer

architectures increase performance by predicting and prefetching instructions from a

large, fast cache. As a result, the penalty for a mispredicted branch or an instruction

cache miss can be quite large. Reordering basic blocks to minimize the number of

mispredicted branches and improve code locality has thus become a significant way for

compilers to improve performance. Although there are various heuristic algorithms

that estimate branch behavior statically, profile-based prediction is significantly better

at reducing the number of mispredicted branches [5, 47].

We use a variant of Pettis and Hansen’s basic block reordering algorithm [35]. The

reordering proceeds in two steps. First, blocks are combined into chains according to

the most frequently executed edges to reduce the number of instruction cache misses.

Second, the chains are ordered based on the target architecture’s branch prediction

strategy to reduce the number of mispredicted branches.

In existing programming environments, basic block reordering has been done at

compile time and requires a separate run to collect profile data from sample inputs.

We demonstrate that basic block reordering and the insertion and removal of pro-

file instrumentation can be done transparently at run time, eliminating the tedious



CHAPTER 1. INTRODUCTION 9

compile-profile-recompile cycle. Programmers have complete control over which pro-

cedures to instrument and when to recompile them, but they may choose to have the

system make these decisions for them.

Our infrastructure enables user-definable automatic recompilation. For example,

one can specify that at every garbage collection, all profiled procedures executed more

than 1000 times will be recompiled with instrumentation off. As a result, programs

run faster and faster as the procedures are automatically recompiled. The resulting

heap with the recompiled procedures can be saved for production use.

In order to support dynamic recompilation, we associate with each procedure a

symbolic representation of its basic blocks and connecting edges (branches), including

edge counts and source information. This structure allows the compiler to generate

and regenerate the machine code for the procedure as well as to provide count infor-

mation to the source viewer.

When procedures are recompiled, new procedures are created and linked to the

original ones. During the next garbage collection, the original procedures are replaced

by the new ones. Using a translation table associated with each recompiled proce-

dure, the collector properly relocates all entry and return points whose offsets may

have changed during recompilation. Because the collector translates return addresses,

procedures can be recompiled while they are executing. In addition, the collector up-

dates the counts of uninstrumented edges as needed to account for changes in counter

placement so that the counts remain accurate across recompilation.

In environments where it is generally impossible to locate all pointers to a given

procedure at run time, dynamic recompilation can be implemented by introducing

one level of indirection into procedure calls and returns. For each procedure call, the

compiler can generate a jump to an entry stub that in turn jumps to the actual entry

point. Similarly, the compiler can cause each procedure call to return through a return

stub that jumps to the appropriate return point. With this design, translating entry



CHAPTER 1. INTRODUCTION 10

and return points is as simple as changing the corresponding stubs. The extra branch

may not reduce performance significantly, especially in systems with a low frequency

of procedure calls or with a similar mechanism already in place for dynamic linking.

With branch-folding hardware, there would be no overhead, because the branches

would be eliminated from the pipeline.

Dynamic recompilation need not be limited to low-level optimizations such as

block reordering. By associating profile data with earlier compilation passes, the re-

compiler can perform run-time optimizations involving register allocation, flow anayl-

sis, lambda lifting, and procedure inlining. Because these optimizations destroy the

one-to-one correspondence among basic blocks, the collector must be sensitive to

return points in original procedures that have no corresponding, compatible return

points in recompiled procedures. By retaining original procedures as long as they have

live unassociated return addresses, the collector can support these optimizations—

even on running procedures.



Chapter 2

Register Allocation

2.1 Background and Overview

Register allocation, the complex problem of deciding which values will be held in

which registers over what portions of the program, encompasses several interrelated

sub-problems. Perhaps the most well-known of these is to decide which variables to

assign to registers so that there is no conflict [13]. Another involves splitting live

ranges of variables in order to reduce conflicts. These problems have been addressed

for both intraprocedural and interprocedural register allocation. Optimizing register

usage across procedure calls is also an important problem, but up to now it has been

addressed primarily in terms of interprocedural analysis.

In this chapter we describe a fast and effective linear intraprocedural register

allocation strategy that optimizes register usage across procedure calls. In conjunction

with local register allocation, this strategy results in performance within range of that

achieved by interprocedural register allocation. Furthermore, it is successful even in

the presence of anonymous procedure calls, which typically cause interprocedural

register allocation techniques to break down.

Our compiler dedicates a set of registers to be used to hold procedure arguments,

11



CHAPTER 2. REGISTER ALLOCATION 12

including the actual parameters and return address. Any unused registers (including

registers containing non-live argument values) are available for intraprocedural allo-

cation, both for user variables and compiler temporaries. Other registers are used for

local register allocation and to hold global quantities such as the stack pointer and

allocation pointer.

Three costs must be minimized in order to optimize register usage across procedure

calls: the cost of saving live registers around calls, the cost of restoring saved registers

before they are used, and the cost of “shuffling” argument registers when setting up

the arguments to a call, some of which may depend upon the old argument values.

It is easy for these costs to exceed the benefits of register allocation, especially with

many registers dedicated to procedure arguments.

We analyzed the run-time call behavior for a large variety of Scheme programs.

While procedures that contain no calls (syntactic leaf routines) account for under one

third of all procedure activations, procedures that actually make no calls (effective leaf

routines) account for over two thirds. We capitalize on this fact by using a “lazy” save

mechanism that avoids saves for all effective leaf routines. In addition, we reduce the

effect of memory latency by employing an “eager” restore mechanism. Although this

approach sometimes introduces unnecessary restores, we found that a lazy mechanism

did not improve performance and added considerable compile-time overhead. Finally,

we employ a “greedy” register shuffling algorithm that does a remarkably good job

of minimizing the need for temporaries in setting up procedure calls.

The remainder of this chapter is organized as follows. Section 2.2 presents our lazy

save, eager restore, and greedy shuffling algorithms. Section 2.3 describes our imple-

mentation of the algorithms. Section 2.4 discusses the performance characteristics of

our implementation. Section 2.5 describes related work.



CHAPTER 2. REGISTER ALLOCATION 13

2.2 Save and Restore Placement

For purposes of discussion we describe our strategy for save and restore placement

in terms of caller-save registers and the simplified language of expressions based on

Scheme [19] below. In Section 2.2.4 we explain how our strategy applies to callee-save

registers.

E → x

→ true

→ false

→ call

→ (seq E1 E2)

→ (if E1 E2 E3)

We assume that assignment conversion has already been done, so there are no as-

signment expressions. All constants are reduced to either true or false. For simplicity,

we ignore the operator and operands of procedure calls by assuming they have been

ordered in some way and placed in a series of seq expressions whose last entry is call.

2.2.1 Lazy Save Placement

The natural strategy for save placement involves two extremes: the callee-save reg-

isters used in a procedure are saved on entry, whereas the caller-save registers live

after a call are saved right before the call. The natural callee-save strategy saves too

soon in the sense that it may introduce unnecessary saves when a path through the

procedure does not use the registers. The natural caller-save strategy saves too late

in the sense that it may introduce redundant saves when a path contains multiple

calls. Our unified strategy optimizes the placement of register saves between these

two extremes for both callee- and caller-save registers.



CHAPTER 2. REGISTER ALLOCATION 14

Benchmark Lines Description

compiler 30,778 Chez Scheme 5.0b recompiling itself

ddd 9,578 Digital Design Derivation System 1.0 [7] deriving
hardware for a Scheme machine [9]

similix 7,305 self-application of the Similix 5.0 partial evaluator [6]

softscheme 10,073 Andrew Wright’s soft typer [50] checking his pattern
matcher

Table 1: Description of register allocation benchmarks

We tooled the Chez Scheme compiler to insert code to count procedure activations

in a variety of programs and found that syntactic leaf routines (those that contain no

calls1) on average account for under one third of all activations. We then retooled the

compiler to determine how many activations actually make no calls. These effective

leaf routines account for an average of more than two thirds of procedure activations.

Our lazy save strategy thus caters to effective leaf routines, saving registers only when

a call is inevitable. Because of assignment conversion, variables need to be saved only

once. In order to minimize redundant saves, therefore, our strategy saves registers as

soon as a call is inevitable. Table 2 gives the results of our measurements for a set of

benchmarks described in Table 1 and for a Scheme version of the Gabriel benchmark

suite [26]. Effective leaf routines are classified as syntactic and non-syntactic leaf

nodes. Non-syntactic internal nodes are activations of procedures that have paths

without calls but make calls at run time, and syntactic internal nodes are those that

have no paths without calls.

First we present a simple algorithm for determining lazy save placement. Next

we demonstrate a deficiency involving short-circuit boolean operations within if test

expressions. We then present an improved algorithm that handles these cases.

1Because tail calls in Scheme are essentially jumps, they are not considered calls for this purpose.



CHAPTER 2. REGISTER ALLOCATION 15

Benchmark Calls Breakdown

compiler 33,041,034

ddd 86,970,102

similix 33,891,834

softscheme 11,153,705

boyer 914,113

browse 1,608,975

cpstak 159,135

ctak 302,621

dderiv 191,219

destruct 236,412

div-iter 1,623

div-rec 140,738

fft 677,886

fprint 43,715

fread 23,194

fxtak 63,673

fxtriang 5,817,460

puzzle 912,245

tak 111,379

takl 537,205

takr 111,380

tprint 41,940

traverse-init 1,268,249

traverse 7,784,102

triang 11,790,492

Average

Table 2: Dynamic call graph summary

syntactic leaf nodes
non-syntactic leaf nodes
non-syntactic internal nodes
syntactic internal nodes



CHAPTER 2. REGISTER ALLOCATION 16

A Simple Save Placement Algorithm

We define the function S[E], the set of registers that should be saved around expres-

sion E, recursively on the structure of our simplified expressions:

S[x] = ∅
S[true] = ∅
S[false] = ∅
S[call] = {r | r is live after the call}

S[(seq E1 E2)] = S[E1] ∪ S[E2]

S[(if E1 E2 E3)] = S[E1] ∪ (S[E2] ∩ S[E3])

We save register r around expression E iff. r ∈ S[E]. By intersecting S[E2] with

S[E3] in the if case, only those registers that need to be saved in both branches are

propagated, which yields a lazy save placement. The union operator in the seq case

places the saves as soon as they are inevitable. It can be shown that this placement

is never too eager; i.e., if there is a path through any expression E without making

a call, then S[E] = ∅.

Short-Circuit Boolean Expressions

Short-circuit boolean operations such as and and or are modeled as if expressions.

As a result, if expressions nested in the “test” part occur frequently. Consider the

expression (if (and x call) y call), which is modeled by (if (if x call false) y call).

There is no path through this expression without making a call, so we would like to

save all the live variables around the outer if expression. Unfortunately, the above

algorithm is too lazy and would save none of the registers, regardless of which registers

are live after the calls:



CHAPTER 2. REGISTER ALLOCATION 17

S[(if (if x call false) y call)]

= S[(if x call false)] ∪ (S[y] ∩ S[call])

= (S[x] ∪ (S[call] ∩ S[false])) ∪ (∅ ∩ S[call])

= ∅ ∪ (S[call] ∩ ∅) ∪ ∅
= ∅

To correct this deficiency, we must be sensitive to conditionals and constants,

especially when they occur in a test context.

The Revised Save Placement Algorithm

The basic principle is to consider the paths through the control flow graph. Along

a given path we take the union of the registers that need to be saved at each node.

Then we take the intersection of all the paths to determine the registers that need to

be saved regardless of the path taken. In order to facilitate this process, we define

two functions recursively: St[E], the set of registers to save around E if E should

evaluate to true, and Sf [E], the set of registers to save around E if E should evaluate

to false. Register r is saved around E iff. r ∈ St[E] ∩ Sf [E].

The base cases are defined as follows, where R is the set of all registers:

St[x] = ∅ Sf [x] = ∅
St[true] = ∅ Sf [true] = R

St[false] = R Sf [false] = ∅
St[call] = {r | r is live Sf [call] = {r | r is live

after the call} after the call}

Since it is impossible that true should evaluate to false, and vice versa, we define

these cases to be R so that any impossible path will have a save set of R, the identity

for intersection. Thus, impossible paths will not unnecessarily restrict the result.



CHAPTER 2. REGISTER ALLOCATION 18

Now we define the recursive cases. Intuitively, the set St[(seq E1 E2)] is the set of

registers to save if the seq expression evaluates to true. There are two possible paths:

E1 is true and E2 is true, or E1 is false and E2 is true. Thus, St[seq] = (St[E1] ∪
St[E2])∩ (Sf [E1]∪St[E2]) = (St[E1]∩Sf [E1])∪St[E2]. The case for Sf [(seq E1 E2)]

is similar, as the diagram illustrates:

E1

E2

??

??

t f

t f

(seq E1 E2)

St[seq] = (St[E1] ∩ Sf [E1]) ∪ St[E2]

Sf [seq]= (St[E1] ∩ Sf [E1]) ∪ Sf [E2]

Next, consider the two paths for which (if E1 E2 E3) evaluates to true: E1 is true

and E2 is true, or E1 is false and E3 is true. Similarly, there are two paths for false,

as the diagram illustrates:

E1

E2 E3

¡
¡ª

@
@R

?? ??

t f

t f t f

(if E1 E2 E3)

St[if ] = (St[E1] ∪ St[E2]) ∩ (Sf [E1] ∪ St[E3])

Sf [if ] = (St[E1] ∪ Sf [E2]) ∩ (Sf [E1] ∪ Sf [E3])

Our example A = (if (if x call false) y call) now yields the desired result. Let L

be the set of live registers after A. Let B = (if x call false).

St[B] = (∅ ∪ ({y} ∪ L)) ∩ (∅ ∪R)

= {y} ∪ L

St[A] = (St[B] ∪ ∅) ∩ (Sf [B] ∪ L)

= L

Sf [B] = (∅ ∪ ({y} ∪ L)) ∩ (∅ ∪ ∅)
= ∅

Sf [A] = (St[B] ∪ ∅) ∩ (Sf [B] ∪ L)

= L

We see that although no registers would be saved around the inner if expression

(since St[B] ∩ Sf [B] = ∅), all the live registers would be saved around the outer if as

desired.



CHAPTER 2. REGISTER ALLOCATION 19

E
A
AAU
¢

¢¢®

t f

St[(not E)] = St[(if E false true)]
= (St[E] ∪R) ∩ (Sf [E] ∪ ∅)
= Sf [E]

Sf [(not E)] = Sf [(if E false true)]
= (St[E] ∪ ∅) ∩ (Sf [E] ∪R)
= St[E]

E1

E2

?

-

?

-

t

f

t

f

St[(and E1 E2)] = St[(if E1 E2 false)]
= (St[E1] ∪ St[E2]) ∩ (Sf [E1] ∪R)
= St[E1] ∪ St[E2]

Sf [(and E1 E2)] = Sf [(if E1 E2 false)]
= (St[E1] ∪ Sf [E2]) ∩ (Sf [E1] ∪ ∅)
= (St[E1] ∪ Sf [E2]) ∩ Sf [E1]

E1

E2

?

-

?

-

f

t

f

t

St[(or E1 E2)] = St[(if E1 true E2)]
= (St[E1] ∪ ∅) ∩ (Sf [E1] ∪ St[E2])
= St[E1] ∩ (Sf [E1] ∪ St[E2])

Sf [(or E1 E2)] = Sf [(if E1 true E2)]
= (St[E1] ∪R) ∩ (Sf [E1] ∪ Sf [E2])
= Sf [E1] ∪ Sf [E2]

Figure 1: Save placement graphs and equations for boolean operators

It is straightforward to show that the revised algorithm is not as lazy as the

previous algorithm, i.e., that S[E] ⊆ St[E] ∩ Sf [E] for all expressions E. It can also

be shown that the revised algorithm is never too eager; i.e., if there is a path through

any expression E without calls, then St[E] ∩ Sf [E] = ∅.
Figure 1 shows the control graphs for not and the short-circuit boolean operators

and and or and the derived equations for these operators.

2.2.2 Eager Restore Placement

We considered two restore strategies based on the question of how soon a register r

should be restored:



CHAPTER 2. REGISTER ALLOCATION 20

ref

call

call

eager

lazy

eager, lazy

call

call

eager

eager

lazy

ref

call

ref

eager, lazy

a. b. c.

Figure 2: Abbreviated control-flow graphs for three restore scenarios

• eager: as soon as r might be needed, i.e., if r will possibly be referenced before

the next call, and

• lazy: as soon as r will be needed, i.e., if r will certainly be referenced before

the next call.

We present three abbreviated control flow diagrams to demonstrate the differences

in the two approaches. The register save regions are indicated by a rounded box.

Calls are indicated by squares, references by circles, and restores by dashes across the

control flow lines. Control enters from the top.

Figures 2a and 2b demonstrate how the eager approach introduces potentially

unnecessary restores because of the joins of two branches with different call and

reference behavior. Figure 2c shows an instance where even the lazy approach may

be forced to make a potentially unnecessary restore. Because the variable is referenced

outside of its enclosing save region, there is a path that does not save the variable.



CHAPTER 2. REGISTER ALLOCATION 21

Consequently, the register must be restored on exit of the save region.

In summary, the eager approach would immediately restore any register possibly

referenced before the next call. It is straightforward and can be easily implemented

in a single linear pass through the abstract syntax tree. A bottom-up pass through

the tree could compute the variable reference information and insert the necessary

restores in parallel. Because the restores occur early, they may reduce the effect of

memory latency.

The lazy approach would restore whenever a reference is inevitable before the

next call or when the register is live on exit from the enclosing save region. Its

main advantage is that most unnecessary restores can be avoided. Unfortunately,

this approach is less straightforward and requires more passes through the abstract

syntax tree.

We implemented both approaches early on and found that the eager approach

produced code that ran just as fast as the code produced by the lazy approach. We

concluded from this that the reduced effect of memory latency offsets the cost of

unnecessary restores.

2.2.3 Greedy Shuffling

When setting up arguments to a call, the new argument values may depend on the

old argument values; thus, argument register shuffling is sometimes necessary. For

example, consider the call f(y, x), where at the time of the call x is in argument

register a1 and y in a2. In order to call f , y must be assigned to a1 and x to a2,

requiring a swap of these two argument registers.

By not fixing the order of evaluation for arguments before register allocation, the

compiler can determine an ordering that requires a minimal amount of shuffling, and

sometimes it can avoid shuffling altogether. For example, the call f(x+y, y+1, y+z),

where x is in register a1, y is in register a2, and z is in register a3, can be set up without



CHAPTER 2. REGISTER ALLOCATION 22

shuffling by evaluating y + 1 last. A left-to-right or right-to-left ordering, however,

would require a temporary location for this argument.

Because we do not fix the order of evaluation of arguments early on, we cannot

compute liveness information in a pass before the shuffling. Since register allocation

depends on liveness information, we must perform register allocation, shuffling, and

live analysis in parallel.

Our shuffling algorithm first partitions the arguments into those that contain calls

(complex ) and those that do not (simple). We use temporary stack locations for all

but the last of the complex arguments, since making a call would cause the previous

arguments to be saved on the stack anyway. We pick as the last complex argument

one on which none of the simple arguments depend (if such a complex argument

exists), since it can be evaluated directly into its argument register.

Ordering the simple arguments is a problem of optimizing parallel assignments,

as noted in [20, 29]. We build the dependency graph and essentially perform a topo-

logical sort. If we detect a cycle, we find the argument causing the largest number of

dependencies and remove it, placing it into a temporary location, in hopes of breaking

the cycle. We then continue the process until all arguments have been processed. This

“greedy” approach to breaking cycles may not always result in the minimal number

of temporaries. We have observed that our algorithm, however, finds the optimal

ordering for a vast majority of call sites (see Section 2.3.1).

2.2.4 Callee-Save Registers

We now describe how our lazy save strategy applies to callee-save registers. As we

noted earlier, the natural register save placement strategy of saving on entry all callee-

save registers used in a procedure introduces unnecessary saves when a path through

the procedure does not use the registers. Our effective leaf routine measurements



CHAPTER 2. REGISTER ALLOCATION 23

indicate that paths without calls are executed frequently. Along these paths caller-

save registers can be used without incurring any save/restore overhead. Using caller-

save registers along paths without calls, our approach delays the use of callee-save

registers to paths where a call is inevitable.

By adding a special caller-save return-address register, ret , the revised save place-

ment algorithm can be used to determine which expressions will always generate a

call. This return register holds the return address of the current procedure and must

be saved and restored around calls. Consequently, if ret ∈ St[E]∩ Sf [E], then E will

inevitably make a call, but if ret 6∈ St[E] ∩ Sf [E], then E contains a path without

any calls.

Chow [17] describes a related technique called “shrink wrapping” to move the

saves and restores of callee-save registers to regions where the registers are active.

His technique, however, is applied after variables have been assigned to callee-save

registers. Consequently, his approach introduces unnecessary saves and restores when

it assigns a variable used along a path without calls to a callee-save register when a

caller-save register could be used instead. Our approach uses inevitable-call regions

to guide the placement of variables into registers and may decide to keep a variable

in a caller-save register until a call is inevitable, at which point it may be moved into

a callee-save register.

2.3 Implementation

We allocate n registers for use by our register allocator. Two of these are used

for the return address and closure pointer. For some fixed c ≤ n − 2, the first c

actual parameters of all procedure calls are passed via these registers; the remaining

parameters are passed on the stack. When evaluating the arguments to a call, unused

registers are used when “shuffling” is necessary because of cycles in the dependency



CHAPTER 2. REGISTER ALLOCATION 24

graph. We also fix a number l ≤ n− 2 of these registers to be used for user variables

and compiler-generated temporaries, both of which appear as let expressions at this

point in the compiler.

The lazy save placement algorithm requires two linear passes through the abstract

syntax tree. The first pass performs greedy shuffling and live analysis, computes

St[E] and Sf [E] for each expression, and introduces saves. The second pass removes

redundant saves.

The eager restore placement algorithm requires one linear pass. It computes the

“possibly referenced before the next call” sets and places the restores. This pass can

be run in parallel with the second pass of the lazy save placement algorithm, so the

entire register allocation process requires just two linear passes.

2.3.1 Pass 1: Save Placement

The first pass processes the tree bottom-up to compute the live sets and the register

saves at the same time. It takes two inputs: the abstract syntax tree (T ) and the set

of registers live on exit from T . It returns the abstract syntax tree annotated with

register saves, the set of registers live on entry to T , St[T ], and Sf [T ].

Liveness information is collected using a bit vector for the registers, implemented

as an n-bit integer. Thus, the union operation is logical or, the intersection operation

is logical and, and creating the singleton {r} is a logical shift left of 1 for r bits.

Save expressions are introduced around procedure bodies and the “then” and

“else” parts of if expressions, unless both branches require the same register saves.

We recognize let expressions and handle them separately. If some of the l registers

are not live on entry to the body of the let, they are allocated in a first-come,

first-served basis to the let variables excluding those bound to lambda expressions.

Because our compiler implements direct calls to let-bound procedures, allocating

registers to them would be fruitless. At this point in the pass, the compiler has



CHAPTER 2. REGISTER ALLOCATION 25

not yet determined the set of registers live on entry to the body of the let. In an

earlier pass, however, it could have already collected the set of free variables of the

let expression. Thus, it can take the union of this set and the set of registers live on

exit to determine the set of registers live on entry.

When we encounter a call, we use the following greedy shuffling algorithm:

1. We build the dependency graph for the register arguments. Since calls destroy

the argument registers, building the dependency graph involves traversing the

tree only down to calls. After the order of evaluation has been determined, the

arguments are traversed again by the current pass, which will visit the nodes

only one more time, since they require no shuffling. Thus, the overall pass is

linear since all nodes in the tree are visited at most twice.

2. We partition the register arguments into those that do not contain calls (simple)

and those that do (complex).

3. We search through the complex arguments for one on which none of the simple

arguments depend. If one is found, it is placed onto the simple list. If not, the

last complex argument is placed onto the simple list. The remaining complex

arguments are evaluated and placed into temporary stack locations, since evalu-

ation of complex arguments may require a call, causing the previous arguments

to be saved on the stack anyway.

4. We look for an argument in the simple list that has no dependencies on the

remaining argument registers. If we find one, we push it onto a “to be done

last” stack of arguments. Then we remove it from the dependency graph and

simple list and repeat step 4 until all arguments have been assigned. Once

all have been assigned, we evaluate the arguments in the “to be done last”

stack directly into their argument registers. We conclude by assigning all the

remaining argument registers from the corresponding temporary locations.



CHAPTER 2. REGISTER ALLOCATION 26

5. If all arguments have dependencies on each other, we greedily pick the one

that causes the most dependencies and evaluate it into a temporary location, in

hopes of breaking all the cycles. After removing it from the dependency graph

and simple list, we continue with step 4. We use other argument registers as

temporaries when possible; otherwise, we use the stack.

This algorithm is O(n3), where n is the number of argument registers. Fortu-

nately, n is fixed and is usually very small, e.g., six in our current implementation.

Consequently, it does not affect the linearity of the pass. Furthermore, n is limited in

practice by the number of simple register arguments, and the operations performed

involve only fast integer arithmetic. Finding the ordering of arguments that mini-

mizes the number of temporaries is NP-complete. We tried an exhaustive search and

found that our greedy approach works optimally for the vast majority of all cases,

mainly because most dependency graph cycles are simple. In our benchmarks, only

7% of the call sites had cycles. Furthermore, the greedy algorithm was optimal for

all of the call sites in all of the benchmarks excluding our compiler, where it was

optimal in all but six of the 20,245 call sites, and in these six it required only one

extra temporary location. In two of these cases a register was available for this extra

location.

2.3.2 Pass 2: Save Elimination and Restore Placement

The second pass processes the tree to eliminate redundant saves and insert the re-

stores. It is significantly simpler than the first pass. It takes three inputs: the abstract

syntax tree (T ), the current save set, and the set of registers possibly referenced af-

ter T but before the next call. It returns two outputs: the abstract syntax tree

with redundant saves eliminated and restores added, and the set of registers possibly

referenced before the next call.



CHAPTER 2. REGISTER ALLOCATION 27

When a save that is already in the save set is encountered, it is eliminated. Re-

stores for possibly referenced registers are inserted immediately after calls.

Our earlier example demonstrates why there may be redundant saves. Suppose

we have a procedure body of (seq (if (if x call false) y call) x ). Then the first pass

of the algorithm would introduce saves as follows:

(save (x )

(seq (if (if x (save (x y) call) false)

y

(save (x) call))

x ))

Two of the saves are redundant (and are underlined) and can be eliminated. The

result of the second pass would be:

(save (x )

(seq (if (if x

(save (y)

(restore-after call (x y)))

false)

y

(restore-after call (x )))

x ))

2.4 Performance

To assess the effectiveness of our register allocator, we measured its ability to eliminate

stack references and its impact on execution time for the set of programs described in

Table 1 and for Scheme versions of the Gabriel benchmarks. We also examined the



CHAPTER 2. REGISTER ALLOCATION 28

effect of our lazy save placement versus the two natural extremes, “early” and “late.”

Although the early strategy eliminates all redundant saves, it generates unnecessary

saves in non-syntactic leaf routines. Because the late save strategy places register

saves immediately before calls, it handles all effective leaf routines well. This late

strategy, however, generates redundant saves along paths with multiple calls. Our

lazy strategy strikes a balance between the two extremes by saving as soon as a call

is inevitable. Consequently, it avoids saves for all effective leaf routines and at the

same time eliminates most redundant saves.

For the baseline and comparison cases, local register allocation was performed

by the code generator, eight registers were globally allocated to support our run-

time model (which provides in-line allocation, fast access to free variables, etc.), and

our greedy shuffling algorithm was employed. Thus our baseline for comparison is a

compiler that already makes extensive use of registers. We were able to collect data

on stack references by modifying our compiler to instrument programs with code to

count stack accesses.

Table 3 shows the reduction in stack references and CPU time when our allocator

is permitted to use six argument registers. The table also gives the corresponding

figures for the early and late save strategies. On average, the lazy save approach elim-

inates 72% of stack accesses and increases run-time performance by 43%, a significant

improvement over both the early (58%/32%) and late (65%/36%) save approaches.

To compare our strategy against other register allocators, we timed assembly code

generated by Scheme for the call-intensive tak benchmark against fully optimized

code generated by the GNU and Alpha OSF/1 C compilers. Table 4 summarizes

these results using the Alpha C compiler as a baseline. We chose the tak benchmark

because it is short and isolates the effect of register save/restore strategies for calls

and because the transliteration between the Scheme and C source code is immediately



CHAPTER 2. REGISTER ALLOCATION 29

Lazy Save Early Save Late Save

stack ref perf. stack ref perf. stack ref perf.

Benchmark reduction increase reduction increase reduction increase

compiler 72% 30% 64% 26% 63% 13%

ddd 68% 47% 59% 43% 63% 44%

similix 69% 26% 57% 18% 51% 9%

softscheme 71% 22% 55% 14% 43% 5%

boyer 66% 54% 49% 46% 60% 21%

browse 72% 39% 60% 35% 70% 56%

cpstak 77% 35% 59% 26% 77% 20%

ctak 71% 85% 50% 20% 70% 64%

dderiv 56% 52% 46% 42% 44% 47%

destruct 88% 33% 82% 34% 87% 36%

div-iter 100% 133% 80% 99% 99% 130%

div-rec 77% 30% 65% 29% 76% 38%

fft 71% 19% 71% 2% 67% –3%

fprint 68% 15% 48% 9% 61% 16%

fread 67% 39% 56% 22% 58% 24%

fxtak 62% 35% 32% 14% 45% 24%

fxtriang 76% 43% 59% 47% 76% 15%

puzzle 74% 34% 68% 32% 74% 34%

tak 72% 109% 52% 92% 50% 93%

takl 86% 67% 58% 41% 83% 67%

takr 72% 15% 52% 3% 50% 4%

tprint 63% 11% 41% 8% 56% 11%

traverse-init 76% 38% 70% 37% 74% 44%

traverse 50% 29% 48% 28% 48% 30%

triang 83% 41% 71% 32% 75% 48%

Average 72% 43% 58% 32% 65% 36%

Table 3: Reduction of stack references and resulting performance increase for three
different save strategies given six argument registers relative to the baseline of no
argument registers. For both baseline and comparison cases, local register allocation
was performed by the code generator, several registers were globally allocated to
support the run-time model, and our greedy shuffling algorithm was employed.



CHAPTER 2. REGISTER ALLOCATION 30

cc -O3 gcc -O3 Chez Scheme

Speed-up 0% 5% 14%

Table 4: Performance comparison of Chez Scheme against the GNU and Alpha OSF/1
optimizing C compilers for tak(26, 18, 9)

Early Save Lazy Save Speed-up

Callee- cc -O3 1.292s 0.676s 91%

save gcc -O3 1.233s 0.772s 60%

Caller-save by hand 0.990s 0.638s 55%

Table 5: Execution times of optimized C code for tak(26, 18, 9) using early and
lazy save strategies for callee-save registers and hand-coded assembly using lazy saves
for caller-save registers

apparent. Our Scheme code actually outperforms optimized C code for this bench-

mark despite the additional overhead of our stack overflow checks [28] and poorer

low-level instruction scheduling.

Part of the performance advantage for the Scheme version is due to our compiler’s

use of caller-save registers, which turns out to be slightly better for this benchmark.

The remaining difference is due to the lazy save strategy used by the Scheme compiler

versus the early save strategy used by both C compilers.

To study the effectiveness of our save strategy for both caller- and callee-save

registers, we hand-modified the optimized assembly output of both C compilers to

use our lazy save technique. In order to provide another point of comparison, we

hand-coded an assembly version that uses caller-save registers. Table 5 compares the

original C compiler times with the modified versions and the hand-coded version. In

all cases the lazy save strategy is clearly beneficial and brings the performance of the

callee-save C code within range of the caller-save code.



CHAPTER 2. REGISTER ALLOCATION 31

To measure the effect of the additional register allocation passes on compile time,

we examined profiles of the compiler processing each of the benchmark programs and

found that register allocation accounts for an average of 7% of overall compile time.

This is a modest percentage of run time for a compiler whose overall speed is very

good: on an Alpha 3000/600, Chez Scheme 5.0b compiles itself (30,778 lines) in under

18 seconds. In contrast, the Alpha OSF/1 C compiler requires 23 seconds to compile

the 8,500 lines of support code used by our implementation. While 7% is acceptable

overhead for register allocation, the compiler actually runs faster with the additional

passes since it is self-compiled and benefits from its own register allocator.

We also ran the benchmarks with several other variations in the numbers of pa-

rameters and user variables permitted to occupy registers, up through six apiece.

Performance increases monotonically from zero through six registers, although the

difference between five and six registers is minimal. Our greedy shuffling algorithm

becomes important as the number of argument registers increases. Before we installed

this algorithm, the performance actually decreased after two argument registers [23].

2.5 Related Work

Graph coloring [13] has become the basis for most register allocation strategies to-

day. Several improvements to graph coloring have been made to reduce expense, to

determine which variables should receive highest priority for available registers, and

to handle interprocedural register allocation.

Steenkiste and Hennessy [44] implemented a combined intraprocedural and in-

terprocedural register allocator for Lisp that assigns registers based on a bottom-up

coloring of a simplified interprocedural control flow graph. They handle cycles in the

call graph and links to anonymous procedures by introducing additional saves and

restores at procedure call boundaries. Using a combination of intraprocedural and



CHAPTER 2. REGISTER ALLOCATION 32

interprocedural register allocation, they are able to eliminate 88% of stack accesses—

approximately 51% via intraprocedural register allocation and the remainder via in-

terprocedural allocation. Our figure of 72% appears to compare favorably since we

do not perform any interprocedural analysis. Differences in language, benchmarks,

and architecture, however, make direct comparison impossible.

Steenkiste and Hennessy found that an average of 36% of calls at run time are to

(syntactic) leaf routines; this is similar to our findings of an average slightly below

one third. They did not identify or measure the frequency of calls to effective leaf

routines.

Chow and Hennessy [18] present an intraprocedural algorithm that addresses cer-

tain shortcomings of straightforward graph coloring. In their approach, coloring of

the register interference graph is ordered by an estimate of total run-time savings from

allocating a live range to a register, normalized by the size of the region occupied.

For live ranges with equal total savings, priority goes to the shorter in hopes that

several short live ranges can be allocated to the same register. In order to improve

procedure call behavior, incoming and outgoing parameters are “pre-colored” with

argument registers. The priority-coloring algorithm is able to make effective use of

caller-save registers for syntactic leaf procedures, preferring callee-save registers for

the rest.

Chow [17] extends the priority-based coloring algorithm to an interprocedural

register allocator designed to minimize register use penalties at procedure calls. He

provides a mechanism for propagating saves and restores of callee-save registers to

the upper regions of the call graph. In this scheme, saves and restores propagate

up the call graph until they reach a procedure for which incomplete information is

available due to cycles in the call graph, calls through function pointers, or procedures

from external modules. Such restrictions render this approach ineffective for typical

Scheme programs which rely on recursion and may make extensive use of first-class



CHAPTER 2. REGISTER ALLOCATION 33

anonymous procedures. Chow also claims that interprocedural register allocation

requires a large number of registers in order to have a noticeable impact; the 20

available to his algorithm were inadequate for large benchmarks.

Clinger and Hansen [20] describe an optimizing compiler for Scheme which achieves

respectable performance through a combination of aggressive lambda-lifting and par-

allel assignment optimization. Lambda lifting transforms the free variables of a proce-

dure into extra arguments, decreasing closure creation cost and increasing the number

of arguments subject to register allocation. Parallel assignment optimization then at-

tempts to make passing arguments in registers as efficient as possible by selecting

an order of evaluation that minimizes register shuffling. Their shuffling algorithm

is similar to ours in that it attempts to find an ordering that will not require the

introduction of temporaries but differs in that any cycle causes a complete spill of all

arguments into temporary stack locations. Although Kranz [29] describes a register

shuffling algorithm similar to ours, details regarding the selection of the node used to

break cycles are not given.

Shao and Appel [39, 2] have developed a closure conversion algorithm that exploits

control and data flow information to obtain extensive closure sharing. This sharing

enhances the benefit they obtain from allocating closures in registers. Graph-coloring

global register allocation with careful lifetime analysis allows them to make flexible

and effective use of callee- and caller-save registers. Since the order of argument

evaluation is fixed early in their continuation-passing style compiler, they attempt

to eliminate argument register shuffling with several heuristics including choosing

different registers for known functions.



Chapter 3

Edge-Count Profiling

This chapter describes a low-overhead edge-count profiling strategy that supports

first-class continuations and reinstrumentation of active procedures. It is based on

one described by Ball and Larus [4] that minimizes the total number of profile counter

increments done at run time. It extends Ball and Larus’s strategy with support for

first-class continuations and reinstrumentation of active procedures. In addition, our

strategy provides a fast linear static edge-count estimator that significantly improves

initial counter placement, and it employs a fast log-linear algorithm to determine

optimal counter placement.

There are two main uses for profile data. First, the dynamic recompiler (see Chap-

ter 4) uses it to perform run-time optimizations such as basic block reordering and to

optimize counter placement. Second, it is used to give feedback to the programmer

via graphical annotation of the original source code.

Section 3.1 reviews Ball and Larus’s optimal edge-count placement algorithm [4].

Section 3.2 presents modifications to support first-class continuations and reinstru-

mentation of active procedures. Section 3.3 describes our implementation. Section 3.4

presents our linear static edge-count estimator. Section 3.5 explains how the profile

data is correlated with the original source. Section 3.6 reports the run-time and

34



CHAPTER 3. EDGE-COUNT PROFILING 35

compile-time costs of profiling. Section 3.7 describes related work.

3.1 Background

A given procedure is represented by a control-flow graph composed of basic blocks

and weighted edges. The assembly language instructions for the procedure are split

into basic blocks, which are sequential sections of code for which control enters only

at the top and exits only from the bottom. The branches at the bottoms of the

basic blocks determine how the blocks are connected, so they become the edges in

the graph. If there are blocks that cannot be reached by any path from the entry

points of the procedure, they are removed from the control-flow graph so that the

resulting graph is connected. The weight of each edge represents the number of times

the corresponding branch is taken.

The key property needed for optimal profiling is conservation of flow, i.e., the

sum of the flow coming into a basic block is equal to the sum of the flow going out

of it. In order for the control-flow graph to satisfy this property, it must represent

all possible control paths. Consequently, a virtual “exit” block is added so that all

exits are explicitly represented as edges to the exit block. Entry to the procedure

is explicitly represented by an edge from the exit block to the entry block, and the

weight of this edge represents the number of times the procedure is invoked.

Because the augmented control-flow graph satisfies the conservation of flow prop-

erty, it is not necessary to instrument all the edges. Instead, the weights for many of

the edges can be computed arithmetically from the weights of the other edges, pro-

vided that the uninstrumented edges do not form a possibly undirected cycle. The

largest cycle-free set of edges is a spanning tree. If there are B blocks, there are B−1

edges in a spanning tree.

Any spanning tree can be used to determine a maximal set of edges that need not



CHAPTER 3. EDGE-COUNT PROFILING 36

be measured. The sum of the weights of the tree’s edges represents the savings in

measurement at run time. Because a maximal spanning tree maximizes this savings,

it determines optimal counter placement by keeping counters off the most frequently

executed edges.

Since the edge from the exit block to the entry block does not correspond to

an actual instruction in the procedure, it cannot be instrumented. Consequently,

the maximal spanning tree algorithm is seeded with this edge so that it is never

instrumented. The resulting spanning tree is still maximal. To see why, suppose

there is a maximal spanning tree that does not contain this edge. There is only one

path in this tree from the exit block to the entry block, so it must pass through exactly

one of the exit block’s incoming edges. By conservation of flow, the weight of this

incoming edge is no greater than the weight of the single outgoing edge connecting the

exit block to the entry block. Consequently, the spanning tree formed by removing

this incoming edge and adding the outgoing edge has at least the same weight as the

original maximal spanning tree, so it is also maximal.

Consider the remq function in Figure 3. It takes an element and a list, and it

returns a copy of the list with all occurrences of the element removed. The function

is defined using three cases. First, if the list is empty, remq returns the empty list.

Second, if the list starts with the element, remq calls itself to return the result of

removing the element from the remainder of the list. Otherwise, remq recursively

calls itself to remove the element from the remainder of the list and then adds the

first element to the result.

To the right of the source code in Figure 3 is a trace of remq removing b from the

list (b a b c d). The vertical bars represent the depth of the stack. Because tail calls

(such as the call to remq in the second condition) are essentially jumps, they do not

increase stack depth.



CHAPTER 3. EDGE-COUNT PROFILING 37

(define remq
(lambda (x ls)

(cond
[(null? ls) ’()]
[(eq? (car ls) x ) (remq x (cdr ls))]
[else (cons (car ls) (remq x (cdr ls)))])))

bne arg2, empty-list, L1 B1
ld ac, empty-list B2
jmp ret

L1: ld ac, car-offset(arg2) B3
bne ac, arg1, L2
ld arg2, cdr-offset(arg2) B4
jmp reloc remq

L2: st arg2, 4(fp) B5
st ret, 0(fp)
ld arg2, cdr-offset(arg2)
ld ret, L3
add fp, 8, fp
jmp reloc remq

L3: sub fp, 8, fp B6
ld arg2, 4(fp)
ld ret, 0(fp)
ld arg1, ac
ld ac, car-offset(arg2)
sub ap, car-offset , xp
add ap, 8, ap
st ac, car-offset(xp)
st arg1, cdr-offset(xp)
ld ac, xp
jmp ret

> (remq ’b ’(b a b c d))
| (remq b (b a b c d))
| (remq b (a b c d))
| | (remq b (b c d))
| | (remq b (c d))
| | | (remq b (d))
| | | | (remq b ())
| | | | ()
| | | (d)
| | (c d)
| (a c d)
(a c d)

B1

B2 B3

B4 B5

B6Exit

1

1 3

3

3

2

2

5

6

Figure 3: remq source, sample trace, basic blocks, and control-flow graph with thick,
uninstrumented edges from one of the twelve maximal spanning trees and encircled
counts for the remaining, instrumented edges



CHAPTER 3. EDGE-COUNT PROFILING 38

(lambda (x )
(f (if (P x ) A B) (if (Q x ) C D)))

5
3

2 2

3 1

4 4

1

5
P

B

A

Q

D

C

f Exit

Figure 4: A loop-free Scheme function whose control-flow graph requires more than
one count per entry

Below the source code in Figure 3 is sample assembly code for remq with run-

time checks for conditions such as stack and heap overflow eliminated for simplicity

of presentation. The addresses for the jumps to remq in B4 and B5 are filled in at

link time and whenever the garbage collector relocates the code object. The assembly

code is divided into basic blocks, and the corresponding control-flow graph is shown

on the right. For the purposes of the graph, the tail call to remq in B4 is considered

a jump to the exit block instead of a jump to B1, because it produces a separate

invocation of remq . The graph assumes that each nontail call to remq in B5 returns

exactly once to B6. In Section 3.2 we discuss what happens when this assumption

fails.

There are twelve maximal spanning trees with weights summing to 20 for the graph

in Figure 3, and one of these is shown by thick edges. The remaining three edges are

the only ones that need to be measured at run time, and their weights are encircled in

the diagram. In this particular case, there is only one counter increment per entry, the

ideal situation. More complicated control-flow graphs, however, may require multiple

increments per entry, even when there are no loops, as seen in Figure 4. Nonetheless,

the maximal spanning tree method guarantees the minimal profiling overhead for all

graphs.



CHAPTER 3. EDGE-COUNT PROFILING 39

3.2 Control-Flow Aberrations

The conservation of flow property is met only under the assumption that all procedure

calls return exactly once per call. First-class continuations, however, can cause some

procedure activations to exit prematurely and others to be reinstated one or more

times. Even when there are no continuations, reinstrumenting a procedure while it

has activations on the stack is problematic because some of its calls have not yet

returned.

Scheme’s call-with-current-continuation (call/cc), for example, encapsulates the

current continuation as a Scheme procedure. If the continuation is invoked, the rest of

the current computation is aborted, and control is resumed at the point where call/cc

was invoked. If the continuation is invoked beyond its dynamic extent, resuming the

computation involves reinstating procedure activations that already exited.

In order to demonstrate the effects of control-flow aberrations, we use a modified

version of the factorial function that calls a procedure to determine the value of the

base case. Figure 5 gives the Scheme source code and corresponding assembly code

partitioned into basic blocks. The fact function is the factorial function when done

is the identity function, (lambda (x ) x ).

Ball and Larus handle the restricted class of exit-only continuations such as those

created by setjmp in C by adding to each call block an edge pointing to the exit

block. The weight of an exit edge represents the number of times its associated

call exits prematurely. Ball and Larus measure the weights of exit edges directly by

modifying continuation invocation (actually, longjmp and exit) to account for aborted

activations. We use a similar strategy, but to avoid the linear stack walk overhead,

we measure the weights indirectly by ensuring that exit edges are on the spanning

tree (see Section 3.3).

Figure 6 shows how call/cc can be used to cause nonlocal exit from fact . As before,



CHAPTER 3. EDGE-COUNT PROFILING 40

(define fact
(lambda (n done)

(if (< n 2)
(done 1)
(∗ n (fact (− n 1) done)))))

bge arg1, 2, L1 B1
ld cp, arg2 B2
ld arg1, 1
jmp entry-offset(cp)

L1: st arg1, 4(fp) B3
st ret, 0(fp)
sub arg1, 1, arg1
add fp, 8, fp
ld ret, L2
jmp reloc fact

L2: sub fp, 8, fp B4
ld arg1, 4(fp)
ld ret, 0(fp)
ld arg2, ac
jmp reloc ∗

Figure 5: Source and basic blocks for fact , a program demonstrating the effects of
nonlocal exit and re-entry on edge counts

> (call/cc
(lambda (k)

(fact 5 k)))

| (fact 5 #<proc>)
| | (fact 4 #<proc>)
| | | (fact 3 #<proc>)
| | | | (fact 2 #<proc>)
| | | | | (fact 1 #<proc>)
1

incorrect counts
without an exit edge:

B1

B2 B3

Exit B4

01

1

0

0

1

all counts correct
with an exit edge:

B1

B2 B3

Exit B4

01

5

4

1 4

0

Figure 6: Trace and control-flow graphs illustrating nonlocal exit from fact with and
without an exit edge



CHAPTER 3. EDGE-COUNT PROFILING 41

thick lines denote edges on a maximal spanning tree and encircled weights denote

measured weights. When call/cc is invoked, it creates a procedure representing the

continuation at that point, which is to print the result as part of the read-eval-print

loop. This continuation is passed to fact along with five. When done is invoked, there

are five activations of fact on the stack. Calling (done 1) aborts these activations and

passes the result, one, to the printer.

Since control does not return from block B3 to block B4, the counter from block

B4 to the exit block is not incremented. For the control-flow graph without an exit

edge, unmeasured weight propagation results in two incorrect weights (shown in bold).

The control-flow graph with an implicitly counted exit edge (shown as a dotted line)

correctly accounts for this nonlocal exit, because an additional counter is placed on

the edge from block B1 to block B3.

With fully general continuations, the weight of an exit edge represents the net

number of times the call does not return. When a single call returns multiple times,

this weight becomes negative. For example, if a certain procedure call is made and

returns normally three times, but it also returns two additional times because of

reinstated activations, the weight of the exit edge would be −2. The weight would

also be −2 if the procedure returned five times because of reinstated activations but

never returned normally because of aborted activations.

Figure 7 shows how call/cc can be used to cause re-entry into fact activations that

already exited. Initially, fact is called with a function that uses call/cc to capture

the continuation at the base case, save it in the global variable redo, and return with

its input. Thus, the call to fact returns 4!, or 24. In the process, redo gets set to

a continuation that multiplies its input by two, three, and four, and then prints the

result. Consequently, when (redo 2) is called, three activations of fact are reinstated

to compute the result, 48. (In the trace, the line “| | | | 2” represents the new result

of the call to done, but there is no corresponding reinstated fact activation because



CHAPTER 3. EDGE-COUNT PROFILING 42

> (fact 4
(lambda (n)

(call/cc
(lambda (k)

(set! redo k)
(k n)))))

| (fact 4 #<proc>)
| | (fact 3 #<proc>)
| | | (fact 2 #<proc>)
| | | | (fact 1 #<proc>)
| | | | 1
| | | 2
| | 6
| 24
24
> (redo 2)
| | | | 2
| | | 4
| | 12
| 48
48

incorrect counts
without an exit edge:

B1

B2 B3

Exit B4

1

1

6

6

7

6

all counts correct
with an exit edge:

B1

B2 B3

Exit B4

1

1 3

3

-3 6

6

Figure 7: Trace and control-flow graphs illustrating re-entry into fact with and with-
out an exit edge

the call to done is a tail call.)

Since control returns from block B3 to block B4 twice as many times as it enters

B3, the counter from block B4 to the exit block is incremented six times. For the

control-flow graph without an exit edge, unmeasured weight propagation results in

two incorrect weights as before. The control-flow graph with an implicitly counted

exit edge (the thick lines denote edges on a spanning tree maximal among those

containing the exit edge) correctly accounts for the re-entries, because there is an

additional counter placed on the edge from block B1 to block B3.



CHAPTER 3. EDGE-COUNT PROFILING 43

3.3 Implementation

In order to support edge-count profiling in our compiler, we added a separate pass to

manipulate a general-purpose symbolic assembly language common to all supported

architectures. Before this addition, our compiler generated machine code directly from

the final transformation pass using a machine-dependent vector of general-purpose

assembly language generators. These generators include operations such as move,

add, subtract, compare, and branch. They manipulate data using register, register

displacement, index, immediate, and special relocation addressing modes. The new

pass collects symbolic assembly code and splits it into basic blocks. Machine code is

then generated from the blocks.

Our system implements procedures of variable arity using case-lambda [12], a

variant of lambda* [22]. Consequently, there may be multiple entry points to a given

procedure. When the compiler determines that a given call site refers to a particular

case of some procedure, it generates a direct call to the appropriate entry point. To

account for multiple entry points, we add a “start” block to the control-flow graph as

a single virtual entry point to which all the actual entry points connect. Alternatively,

we could add edges from the exit block to all the entry blocks.

For efficiency, our compiler uses the priority-first search algorithm for finding a

maximal spanning tree [38]. Its worst-case behavior is O((E + B) log B), where B is

the number of blocks and E is the number of edges. Since each block has no more than

two outgoing edges, E is O(B). Consequently, the priority-first algorithm performs

very well with a worst-case behavior of O(B log B).

Another benefit of this algorithm is that it adds uninstrumented edges to the tree

in precisely the reverse order for which their weights need to be computed using the

conservation of flow property. As a result, the propagation of weights from instru-

mented to uninstrumented edges does not require a separate depth-first search as



CHAPTER 3. EDGE-COUNT PROFILING 44

If A’s only outgoing edge is e, the incre-
ment code is placed in A.

B
einc e

A

If B’s only incoming edge is e (and B is
not the exit block), the increment code is
placed in B.

B
e inc e

A

Otherwise, the increment code is placed
in a new block C that is spliced into the
control-flow graph.

A
e

B

inc e
C

Figure 8: Efficient instrumentation of edge e from block A to block B

described by Ball and Larus [4]. Instead, the maximal spanning tree algorithm gen-

erates the list used to propagate the weights quickly and easily. This list is especially

important to the garbage collector, which must propagate the weights of recompiled

procedures (see Sections 4.2 and 4.4).

Figure 8 illustrates how our compiler efficiently instruments edges. It minimizes

the number of additional blocks needed to increment counters by placing as many

increments as possible in existing blocks. The increment instructions refer to the

edge data structures by actual address.

Instrumenting exit edges is more difficult because there are no branches in the pro-

cedure associated with them. We solved this problem for the edge from the exit block

to the entry block by seeding the maximal spanning tree algorithm with this edge

and proving that the resulting tree is still maximal. Unfortunately, exit edges rarely

lie on a maximal spanning tree because their weights are usually zero. Consequently,

there are two choices for measuring the weights of exit edges.

First, we could modify the implementation of continuation invocation to update

the weights of exit edges directly. Ball and Larus use this technique for exit-only

continuations by incrementing the weights of the exit edges associated with each



CHAPTER 3. EDGE-COUNT PROFILING 45

activation that would exit prematurely [4]. This approach would support fully general

continuations if it would also decrement the weights of the exit edges associated with

each activation that would be reinstated. The pointer to the exit edge would have to

be stored either in each activation record or in a static location associated with the

return address.

Second, we could make sure that all exit edges are uninstrumented by seeding the

maximal spanning tree algorithm with them. In general, the resulting spanning tree

would not be maximal, but it would be maximal among spanning trees that include

all the exit edges. This approach is simple to implement, requiring no change to

the implementation of continuations. Because the notion of maximal is weakened,

however, the profiling overhead increases.

Our system’s segmented stack implementation supports constant-time continua-

tion operations [28, 8]. Implementing the first approach would destroy this property.

Moreover, if any procedure is profiled, the system must traverse all activations to

find the profiled ones. Although the second approach increases profiling overhead, it

affects only profiled procedures, the overhead is still reasonable, and the programmer

may turn off accurate continuation profiling when it is not needed. Consequently, we

implemented only the second approach.

Representing nontail procedure calls in the graph is complicated by our implemen-

tation of multiple return values and run-time error checking. As shown in Figure 13,

four words of data are placed in the instruction stream immediately before the single-

value return point from each nontail call [28, 3, 8]. The first three words are used to

support efficient garbage collection and continuation invocation. The last word, the

multiple-value return address, is used when a procedure returns more than one value

or zero values.

When the compiler cannot prove that the callee is a procedure, it generates code

to test the callee at run time. If the test fails, the error procedure is called instead



CHAPTER 3. EDGE-COUNT PROFILING 46

immeasurable edges
at the call blocks:

Exit

svrp

error call

proc?

mvrp

measurable edges
at the return block:

Exit

svrp

error call

proc?

mvrp

Figure 9: Control-flow graph segments showing a checked nontail procedure call with
two placement strategies for the exit and multiple-value return edges

of the callee. For efficiency, one return point is shared by the call to the callee and

the call to error, as shown in Figure 9. Ideally, each call block would have its own

exit and multiple-value return edges, but the single- and multiple-value return edges

would be impossible to instrument without replicating the return point.

Rather than replicating the return point and complicating the recompilation pro-

cess to account for it when instrumentation is turned on and off, we associate one

exit edge and one multiple-value return edge with the return block. As before, the

exit edge is counted indirectly by seeding the maximal spanning tree algorithm with

it. Its weight represents the net nonlocal exit count from both call sites. To instru-

ment the edge from the return-point header to the multiple-value return block, the

compiler simply changes the multiple-value return address to point to a new block

that increments the weight of this edge. Its weight represents the total number of



CHAPTER 3. EDGE-COUNT PROFILING 47

multiple-value returns from both call sites. Because each call block now has just one

outgoing edge, these edges are instrumented by placing increments in the call blocks.

The weight of each of these edges represents the number of times the corresponding

call is made. The total number of single-value returns for both calls can be computed

by subtracting the exit and multiple-value return counts from the sum of the two call

counts.

After the compiler constructs the control-flow graph from the symbolic assembly

code, it builds a spanning tree maximal among those seeded with the edges from the

exit block to all the return points. In the process it builds a list of edge/block pairs

that is used to propagate the values of measured edges to the unmeasured ones using

the conservation of flow property. The edges not on the tree are instrumented with

increments placed in existing blocks whenever possible to minimize the number of

additional blocks used to increment weights.

3.4 Static Edge-Count Estimator

When a procedure is compiled for the first time, no profile data is available. Conse-

quently, the edge counts are all zero, so the maximal spanning tree algorithm finds a

spanning tree that may be far from maximal when the procedure actually executes.

Our static estimator significantly improves initial counter placement by simulating

profile data. It correctly predicts the behavior of common run-time tests such as

heap and stack overflow, identifies and predicts internal loops, and assumes all other

tests have a 50% chance of succeeding. Unlike Ball and Larus’s estimator [4], it is

linear and does not require the control-flow graph to be reducible.

The key idea that enables the estimator to be linear is that a static weighting

of the control-flow graph need not satisfy the conservation of flow property. The

counter placement algorithm, based on a maximal spanning tree, does not depend



CHAPTER 3. EDGE-COUNT PROFILING 48

on this property. Only weight propagation depends on this property. Because the

estimated weights are cleared before the procedure actually executes, however, they

do not interfere with weight propagation.

The algorithm performs a depth-first traversal of the control-flow graph to identify

and weight the back edges (internal loops) and determine a block ordering used to

propagate the weights. Using this block ordering, the algorithm then processes each

block, computing the total of the incoming flow and dividing it among the outgoing

edges, excluding the exit and multiple-value return edges at call sites. When the

algorithm recognizes a block that performs a common run-time test, it divides the

flow to favor the outgoing edge that is more likely to be executed. Otherwise, it

divides the flow evenly.

Figure 10 gives Scheme code for the algorithm. Each block has a status field that

is initially unvisited. The depth-first traversal is accomplished by the process-edge

procedure, which begins with the edge from the exit block to the start block. To

prevent the algorithm from identifying this edge as a back edge, we mark the exit

block visited.

When process-edge traverses an edge, it examines the block to which the edge

points. If its status is unvisited, it changes it to active so that it can detect back

edges later on, and it recursively traverses the outgoing edges (excluding exit and

multiple-value return edges). The block is then marked visited and added to the front

of the order list.

If the block’s status is active, the edge is a back edge, indicating an internal loop.

It is assigned the constant weight loop-weight (in our implementation, one half of

top-weight), and nothing more is done. Otherwise, the block’s status must be visited,

and there is nothing to do in this case.

When process-edge finishes, all back edges are assigned a weight, and order con-

tains a list of the blocks in an order appropriate for propagate-flow . Next, the edge



CHAPTER 3. EDGE-COUNT PROFILING 49

(define (weight-graph graph exit-block)

(define order ’())

(define (process-edge edge)
(let ([block (edge-to edge)])

(cond
[(eq? (status block) ’unvisited)
(set-status! block ’active)
(for-each process-edge (block-out-edges block))
(set-status! block ’visited)
(set! order (cons block order))]
[(eq? status ’active) ; back edge detected
(set-weight! edge loop-weight)]
[else (void)]))) ; already visited

(define (propagate-flow block)
(let ([flow (add-weights (block-in-edges block))]

[edges (block-out-edges block)])
(cond
[(usually-fails? block)
(let ([n (quotient flow 10)])

(set-weight! (car edges) n)
(set-weight! (cadr edges) (− flow n)))]

[(usually-succeeds? block)
(let ([n (quotient flow 10)])

(set-weight! (car edges) (− flow n))
(set-weight! (cadr edges) n))]

[else (divide-evenly flow edges)])))

(let ([top-edge (car (block-out-edges exit-block))])
(set-status! exit-block ’visited)
(process-edge top-edge)
(set-weight! top-edge top-weight)
(for-each propagate-flow order)))

Figure 10: Scheme code for the static edge-count estimator



CHAPTER 3. EDGE-COUNT PROFILING 50

from the exit block to the start block is assigned the constant weight top-weight (in

our implementation, 1000). Then, for each block on the list, propagate-flow is called

to divide the incoming flow among the outgoing edges.

In our system, propagate-flow recognizes common run-time checks for synchronous

interrupts, heap overflow, stack overflow, calling a non-procedure, incorrect number of

arguments to anonymous procedures, and overflow of fixed-size integer addition and

subtraction. These tests, which account for between a third and a half of the tests

done at run time, behave the same way at least 90% of the time, so propagate-flow

skews the outgoing flow by a ratio of 1:9. For the remaining blocks, propagate-flow

divides the flow evenly among the outgoing edges.

To show that propagate-flow processes the blocks in an order that guarantees

that each block’s incoming flow has already been determined, one first shows via a

straightforward proof by induction that process-edge adds a block to the order list

only after all the blocks that can be reached from that block following a sequence of

directed edges (excluding back edges) have been added to the list. Consequently, the

list exhibits the following property. Given any block on the list, there are only three

possibilities for each incoming edge: it comes out of a block that occurs earlier in the

list, it is a back edge, or it is the edge from the exit block to the start block. Since

propagate-flow already assigned the weights for outgoing edges of blocks occurring

earlier in the list, all the incoming edges of the given block have valid weights. As a

result, the incoming flow for each block depends only on weights that have already

been computed or assigned. Moreover, when there are no back edges, this algorithm

produces a weighting that satisfies the conservation of flow property.

The reason cyclic graphs usually violate the conservation of flow property is that

propagate-flow reassigns the weights of back edges as it propagates the flow out of

the blocks from which they point. An iterative update process would be required to

regain the conservation of flow property, but such iterating would cause the estimator



CHAPTER 3. EDGE-COUNT PROFILING 51

(lambda (n)
(let loop ([x (I n)])

(if (and (P x ) (Q x ))
(loop (F x ))
x )))

QPIStart F

xExit

1000 1000 750 375

750 375

1000
1125

375

Figure 11: A Scheme function with an internal loop and its associated control-flow
graph weighted by the static edge-count estimator with top-weight 1000 and loop-
weight 500

to become non-linear.

The depth-first traversal touches every edge once, so it is linear with respect to

the number of edges. As shown in Section 3.1, the number of edges is no more than

twice the number of blocks, so the depth-first traversal is linear with respect to the

number of blocks. The propagation phase touches every edge twice (from the block

on each end), so it is linear, too.

Consider the Scheme function in Figure 11. The named let in this example ex-

pands into a letrec expression that binds loop to a separate function that processes

the body of the loop. Instead of compiling it as a separate function, our compiler con-

verts this particular type of letrec expression into an actual loop in assembly code.

The resulting control-flow graph and the weights computed by the static edge-count

estimator are also shown in Figure 11.

This example demonstrates a cyclic graph for which the estimator produces a

weighting that violates the conservation of flow property at the P and exit blocks

but nonetheless results in optimal counter placement. The depth-first traversal of



CHAPTER 3. EDGE-COUNT PROFILING 52

the graph identified the back edge from F to P and assigned it the weight 500. The

subsequent propagation of flow reassigned it the weight 375. Even though this weight-

ing violates the conservation of flow property, the maximal spanning tree determined

from it turns out to be one of the two spanning trees that are maximal regardless

of actual execution counts. Without a static weighting of this graph, the maximal

spanning tree algorithm would find an arbitrary one of the 29 spanning trees, giving

it a low chance of finding one of the two maximal ones. Unfortunately, the estimator’s

loop prediction algorithm is too simplistic to produce optimal counter placement for

many other cyclic graphs, although it does often improve initial counter placement.

Because the estimator accurately predicts the behavior of common run-time tests

and produces a reasonably flow-consistent weighting, it significantly improves initial

counter placement. Moreover, it is fast, increasing average compile time by only one

percent. Statistics of its speed and effectiveness in optimizing counter placement are

given in Section 3.6, and statistics of its effectiveness in predicting branch behavior

are given in Section 4.6.

3.5 Graphical Feedback

Conventional profiling tools use procedure names and line numbers to associate the

data with the original source. Scheme procedures, however, do not always have names,

so the compiler uses a source record that uniquely identifies the source expression.

The current implementation uses the file name and the byte offset from the beginning

of the file to identify the start of the source expression.

By propagating these source records through all the intermediate passes, the com-

piler can associate each source record with an appropriate basic block. In our sys-

tem, the reader annotates its output with source records that are preserved through



CHAPTER 3. EDGE-COUNT PROFILING 53

macro expansion by the syntax-case macro expander [24]. Each intermediate rep-

resentation contains a source field that the transformation passes maintain. The last

transformation pass generates a special “source” pseudo-instruction that contains the

source record. This instruction is stored in the appropriate basic block, but it does

not generate any machine code.

The normal location for a Scheme expression’s source record is in the basic block

that begins to evaluate it. For example, if, set!, let, and letrec are handled in this

way. For procedure calls, however, the source expression corresponds to the basic

block that makes the call. In most situations the count for this block is the same as

the count for the block that begins to evaluate the entire call expression. A difference

arises when continuations are involved, and in this case it is useful to know how many

times the call is actually made.

Open-coded primitives are handled in a similar way for the same reason. Their

source records are associated with the basic block that begins to evaluate the primitive

after the arguments have already been evaluated.

When a constant or reference occurs in nontail position, its count can usually be

determined from the count of the closest enclosing expression. An exception arises

when the constant or reference occurs in nontail position as the “then” or “else” part of

an if expression. For example, consider the program in Figure 4 when A, B, C, and D

are constants. Consequently, the compiler generates source instructions for constants

and references only when they occur in tail position or as the “then” or “else” part

of an if expression. By eliminating the source instructions for the remaining cases,

the compiler significantly reduces the number of source records stored in basic blocks

without sacrificing useful information.

To display the block counts in terms of the original source, we follow three steps.

First, we determine the count for each block by summing the weights of all its outgoing

edges. Second, we build an association list of source expressions and block counts from



CHAPTER 3. EDGE-COUNT PROFILING 54

Figure 12: A pattern matcher displayed using different colors for different execution
frequencies

the source records stored in each basic block. Third, we use this list and graphical

tools from the Scheme Widget Library [46] to pop up a window with the source code

colored according to the counts. The programmer can also click on an expression, and

the system finds and displays the corresponding count. Figure 12 gives an example.

The programmer is not limited to displaying information for one procedure at a

time. Because code objects are stored in a single logical area of the heap, they can

all be found at run time by a simple pass through that area. The data for all profiled

procedures can be sorted by file name and then displayed using a separate window

for each source file. The data can also be sorted by frequency to help programmers

identify hot spots. This technique proved useful in profiling the profiler itself, helping

us identify inefficiencies in the maximal spanning tree and block look-up algorithms.



CHAPTER 3. EDGE-COUNT PROFILING 55

3.6 Performance

Profiling has both run-time and compile-time costs. To assess these costs under

various conditions, we used the set of Scheme benchmarks described in Table 6.

All but the four largest ones came from the Gambit-C 2.3.1 benchmark suite. The

measurements were taken on a DEC Alpha 3000/600 running Digital UNIX V4.0A.

Table 7 gives the results for three compilation conditions. The first compilation

condition, zero, determines count placement by running the maximal spanning tree

algorithm with all weights initially zero. The second condition, est, uses the static

estimator to provide an initial weighting. The third condition, prev, uses the weights

from a previous run of the benchmark. Our base of comparison is the compiler that

generates and stores in the object file the control-flow graph with symbolic assembly

code but does not instrument it for profiling.

The average overhead of the zero case is 77% at run time and 10% at compile time.

The static estimator is effective at reducing the run-time overhead while increasing

average compile time by just one percent. The estimator reduces the average run-time

overhead by 27 percentage points and the average number of counts by 43%. Much

of the benefit of the estimator comes from predicting the behavior of run-time checks

that account for between a third and half of all tests done at run time. Without this

prediction, the estimator results in no significant reduction in CPU time and only a

12% reduction in the number of counts.

Despite the effectiveness of the static estimator, dynamic counter placement based

on weights from a previous run reduces the average run-time overhead by thirteen

percentage points and the number of counts by 23%. On average, the recompiler

requires 15% of the initial compile time to reinstrument and regenerate the code.

Table 8 gives the results when support for accurate profiling of control-flow aber-

rations is disabled. On average, removing the support decreases run time by 20% for



CHAPTER 3. EDGE-COUNT PROFILING 56

Benchmark Lines Description

compiler 35,913 Chez Scheme 5.0g recompiling itself

softscheme 10,073 Andrew Wright’s soft typer [50] checking his pattern
matcher

ddd 9,578 Digital Design Derivation System 1.0 [7] deriving hard-
ware for a Scheme machine [9]

similix 7,305 self-application of the Similix 5.0 partial evaluator [6]

nucleic 3,475 3-D structure determination of a nucleic acid

slatex 2,343 SLaTeX 2.2 typesetting its own manual

interpret 1,069 Marc Feeley’s Scheme interpreter evaluating takl

maze 730 Hexagonal maze maker by Olin Shivers

earley 655 Earley’s parser by Marc Feeley

peval 639 Feeley’s simple Scheme partial evaluator

boyer 572 Logic programming benchmark originally by Bob Boyer

conform 498 Type checker by Jim Miller

browse 196 Browse of an AI-like database of units

simplex 190 Simplex algorithm

puzzle 150 Forest Baskett’s puzzle benchmark

trav1 149 Creation of a tree structure

trav2 149 Traversal of a tree structure

dderiv 92 Table-driven symbolic differentiation

fft 77 Fast Fourier Transform

destruct 64 Destructive operations

triangle 62 Triangle board game

mbrot 51 Generation of Mandelbrot set fractal

deriv 50 Symbolic differentiation

cpstak 33 Takeuchi function in continuation-passing style

ctak 30 Takeuchi function using call/cc

takl 29 Takeuchi function using lists for numbers

diviter 28 Iterative division using lists for numbers

divrec 27 Recursive division using lists for numbers

tak 19 Takeuchi function

fib 18 Recursive Fibonacci function

Table 6: Description of profiling benchmarks



CHAPTER 3. EDGE-COUNT PROFILING 57

Run Time Counts (Re)Compile Time
Benchmark zero est prev zero est prev zero est prev

compiler 1.70 1.52 1.34 2.48 1.35 1.00 1.14 1.16 0.21
softscheme 1.59 1.51 1.31 1.81 1.31 1.00 1.08 1.10 0.10

ddd 1.15 1.12 1.06 2.29 1.45 1.00 1.18 1.19 0.18
similix 1.65 1.53 1.44 1.84 1.29 1.00 1.14 1.16 0.25
nucleic 1.23 1.18 1.19 2.08 1.29 1.00 1.03 1.03 0.05
slatex 1.19 1.09 1.05 3.53 1.21 1.00 1.13 1.13 0.15

interpret 2.82 2.25 1.88 2.05 1.08 1.00 1.19 1.19 0.09
maze 1.25 1.09 1.08 2.52 1.36 1.00 1.12 1.10 0.11

earley 1.35 1.17 1.16 2.62 1.17 1.00 1.08 1.08 0.13
peval 1.70 1.45 1.39 2.12 1.08 1.00 1.31 1.31 0.15
boyer 1.97 1.53 1.40 2.10 1.14 1.00 1.04 1.05 0.12

conform 2.47 1.95 1.69 2.31 1.28 1.00 1.06 1.10 0.13
browse 1.70 1.49 1.30 2.73 1.60 1.00 1.05 1.06 0.08

simplex 1.34 1.25 1.18 2.50 1.06 1.00 1.06 1.06 0.11
puzzle 1.72 1.42 1.40 2.16 1.05 1.00 1.02 1.04 0.10
trav1 1.82 1.36 1.37 1.98 1.03 1.00 1.25 1.24 0.10
trav2 1.88 1.59 1.43 1.99 1.49 1.00 1.03 1.04 0.05

dderiv 2.01 1.61 1.55 2.29 1.11 1.00 1.10 1.14 0.16
fft 1.06 1.06 1.05 1.57 1.10 1.00 1.08 1.09 0.15

destruct 1.77 1.39 1.28 2.08 1.31 1.00 1.10 1.10 0.16
triangle 1.89 1.40 1.37 3.26 1.97 1.00 1.02 1.04 0.13

mbrot 1.06 1.04 1.07 2.05 1.05 1.00 1.09 1.11 0.19
deriv 2.18 1.93 1.88 2.13 1.00 1.00 1.12 1.11 0.18

cpstak 1.87 1.56 1.30 3.00 1.57 1.00 1.11 1.11 0.21
ctak 1.45 1.38 1.23 2.54 1.36 1.00 1.11 1.11 0.21
takl 2.59 1.91 1.54 2.75 1.73 1.00 1.10 1.10 0.22

diviter 1.94 1.49 1.47 2.03 1.00 1.00 1.07 1.09 0.17
divrec 2.06 1.59 1.45 2.00 1.50 1.00 1.07 1.09 0.17

tak 2.47 2.04 1.65 2.14 1.57 1.00 1.09 1.07 0.25
fib 2.32 1.97 1.57 2.00 1.50 1.00 1.12 1.12 0.25

Average 1.77 1.50 1.37 2.30 1.30 1.00 1.10 1.11 0.15

Table 7: Relative costs of edge-count profiling: zero—instrumentation with initial
weights zero, est—instrumentation with initial weights from the static estimator, and
prev—instrumentation with initial weights from a previous run. The run and compile
times are relative to a base compiler that does not instrument for profiling. The prev
compile times are the recompile times relative to the base compile times. The counts
are relative to those in the prev column.



CHAPTER 3. EDGE-COUNT PROFILING 58

Run Time Counts (Re)Compile Time
Benchmark zero est prev zero est prev zero est prev

compiler 1.45 1.46 1.30 1.34 1.13 0.76 1.11 1.12 0.18
softscheme 1.34 1.34 1.20 0.94 0.79 0.45 1.07 1.06 0.09

ddd 1.04 1.06 1.06 0.84 0.81 0.43 1.13 1.14 0.17
similix 1.40 1.40 1.19 1.00 0.87 0.53 1.13 1.12 0.23
nucleic 1.14 1.14 1.10 1.22 0.90 0.62 1.02 1.02 0.05
slatex 1.06 1.09 1.04 1.02 1.00 0.74 1.07 1.09 0.15

interpret 1.63 1.67 1.25 1.23 0.74 0.61 1.04 1.07 0.09
maze 1.20 1.19 1.10 1.25 1.06 0.66 1.07 1.07 0.11

earley 1.29 1.29 1.27 1.07 0.93 0.77 1.06 1.07 0.12
peval 1.43 1.44 1.29 1.01 0.87 0.64 1.30 1.31 0.13
boyer 1.51 1.51 1.34 1.07 1.03 0.88 1.02 1.04 0.11

conform 1.75 1.83 1.56 0.94 0.91 0.50 1.04 1.05 0.12
browse 1.41 1.47 1.39 1.14 1.17 0.69 1.04 1.04 0.07

simplex 1.27 1.19 1.23 1.46 1.03 0.96 1.05 1.05 0.12
puzzle 1.37 1.40 1.39 1.16 1.03 0.99 1.02 1.03 0.09
trav1 1.32 1.32 1.34 0.97 0.96 0.94 1.21 1.22 0.10
trav2 1.62 1.63 1.44 1.49 1.49 1.00 1.05 1.06 0.05

dderiv 1.53 1.54 1.29 1.12 0.83 0.67 1.09 1.13 0.16
fft 1.06 1.05 1.03 1.31 1.10 1.00 1.07 1.10 0.15

destruct 1.39 1.39 1.27 1.27 1.27 0.96 1.07 1.08 0.16
triangle 1.37 1.37 1.34 1.63 1.48 0.99 1.02 1.03 0.13

mbrot 1.07 1.03 1.04 1.03 1.02 1.00 1.07 1.10 0.19
deriv 1.86 1.78 1.79 0.92 0.68 0.68 1.11 1.09 0.18

cpstak 1.53 1.54 1.28 2.00 1.57 1.00 1.10 1.08 0.21
ctak 1.43 1.41 1.22 1.45 1.09 0.73 1.08 1.07 0.21
takl 1.88 1.87 1.41 1.65 1.58 0.83 1.07 1.10 0.21

diviter 1.45 1.49 1.49 1.02 1.00 1.00 1.04 1.06 0.16
divrec 1.37 1.37 1.43 1.00 1.00 0.50 1.04 1.07 0.17

tak 1.77 1.77 1.38 1.14 1.14 0.57 1.09 1.07 0.25
fib 1.65 1.66 1.24 1.00 1.00 0.50 1.10 1.08 0.21

Average 1.42 1.42 1.29 1.19 1.05 0.75 1.08 1.09 0.15

Table 8: Relative costs of profiling as in Table 7 but without support for first-class
continuations and reinstrumentation of active procedures



CHAPTER 3. EDGE-COUNT PROFILING 59

the zero case, 5% for the est case, and 6% for the prev case, decreases the number of

counts by 48% for the zero case, 19% for the est case, and 25% for the prev case, and

decreases compile time by 0–2%.

The overhead of manipulating and storing symbolic assembly code is quite large.

We found that the base compiler takes three times as much CPU time, allocates

twice as much memory, and generates object files that are four times as large as

the compiler that generates machine code directly. This overhead is still acceptable

since the symbolic version compiles 315 lines of macro-intensive Scheme code per

second, and the Alpha OSF/1 C compiler compiles 300 lines of C code per second.

The current implementation generates machine code twice, once to determine label

offsets and again to produce the actual output. Consequently, we expect that the

overhead could be greatly reduced by generating machine code using a one-and-a-

half pass assembler. Furthermore, each block could contain actual machine code

instead of symbolic assembly code for all but the last instruction. This optimization

would reduce the size of each block and eliminate the need to regenerate machine

code for anything except the branches. Finally, compression of the resulting symbolic

information would reduce object file size considerably.

3.7 Related Work

Profiling can be divided into two main areas: count-based and time-based. Ball and

Larus’s optimal edge-count profiling strategy [4] is the main work in count-based

profiling. ATOM [42] is a system used to specify code-instrumenting tools such as

profilers and can be used to implement edge-count strategies. It operates on object

files and provides functions that make it easy to access procedures, basic blocks, and

instructions. The current framework, however, does not allow for dynamically created

procedures; all procedures must be in object files at link time.



CHAPTER 3. EDGE-COUNT PROFILING 60

Hall [27] describes a time-based profiling technique for functional languages that

addresses the reuse of functions problem. Rather than focusing on procedures, the

technique focuses on procedure calls in their full lexical context. The system uses

renaming strategies to create separate instances of procedures for different lexical

calling contexts. It can therefore result in exponential code growth if not carefully

controlled. Hall expands the code one level at a time, rerunning a profiling suite

each time to determine which calls are consuming the most resources. Only the most

time consuming procedure calls are further expanded. This process can be very time

consuming. It assumes the entire program text is available to the compiler at once.

Because the system defines the lexical context of an anonymous procedure as the

context of the closest enclosing named procedure, it does not handle anonymous and

higher-order procedures very well.

Sansom and Peyton Jones [37] describe a time-based profiling technique for lazy

functional languages. They allow the programmer to label any source expression with

a “cost center.” The cost of evaluating the labeled expression is attributed to the

named cost center, which makes it easy to relate the profile data to the original source,

even if there are program transformations. This technique allows programmers to

work around the reuse of functions problem in that each application of a function can

be attributed to a different cost center, if desired. This approach is implemented by

keeping track of the current cost center and using periodic hardware timer interrupts

to increment the current cost center’s count. A cost center is associated with every

procedure. Whenever a procedure is invoked, its cost center becomes the current cost

center. Unfortunately this method does not directly allow for nested cost centers. It

would be possible to have an active stack of cost centers, although this would increase

the overhead of the timer interrupt routine’s update process.



Chapter 4

Dynamic Recompilation

This chapter presents an efficient infrastructure for dynamic recompilation in Scheme

using the example of basic block reordering based on edge-count profile data. The in-

frastructure enables completely transparent recompilation of procedures at run time,

even if some of them have live activations on the stack or in captured continuations.

To support dynamic recompilation, the system must be able to find all pointers to a

given procedure at run time. This property is satisfied by modern garbage collectors

but may also be satisfied in other ways. The infrastructure adds negligible overhead

to unprofiled programs and requires only minor changes to the garbage collector.

Section 4.1 gives some background on profile-based optimizations. Section 4.2

presents an overview of dynamic recompilation in our system. Section 4.3 summa-

rizes the representations of Scheme objects and how they are modified to support

dynamic recompilation. Section 4.4 describes how the garbage collector transpar-

ently replaces code objects with recompiled ones. Section 4.5 illustrates dynamic

recompilation using a variant of Pettis and Hansen’s basic block reordering algorithm

to reduce the number of mispredicted branches and instruction cache misses [35].

Section 4.6 reports the cost of recompilation and the effectiveness of dynamic block

reordering versus static block ordering based on the edge-count estimator described

61



CHAPTER 4. DYNAMIC RECOMPILATION 62

in Section 3.4. Section 4.7 describes related work.

4.1 Background

Profiling tools have certainly been valuable for programmers by helping them iden-

tify execution bottlenecks and inefficiencies. Anderson [1] demonstrates the value

of profiling with two 2000-line machine learning programs. Both are floating-point

intensive, and the second is also structure manipulation intensive. Each program

was written in both C and Lisp, and the C versions were “highly optimized.” One

day was spent tuning the Lisp versions using profile data. The first Lisp program

was improved by 40%, making it slightly faster than the C version. The second Lisp

program was improved by a factor of 30, making it over twice as fast as the C version.

Profiling tools can also provide useful information for compilers. Current com-

puter architectures increase performance by predicting and prefetching instructions,

by issuing multiple instructions in a single clock cycle, and by reading from and writ-

ing to large caches. Consequently, it has become increasingly important for compilers

to generate code that takes factors such as instruction scheduling, branch prediction,

and code locality into account. Profile data can assist the compiler is these areas.

Basic blocks can be reordered to reduce the number of mispredicted branches

and instruction cache misses [35, 36]. Although there are various heuristic algorithms

that estimate branch behavior statically, research has demonstrated that profile-based

prediction is significantly more effective [5, 47, 34]. In current programming environ-

ments, profile-based prediction requires a tedious compile-profile-recompile cycle. In

our system, the instrumentation for profiling and the subsequent recompilation are

done at run time.



CHAPTER 4. DYNAMIC RECOMPILATION 63

4.2 Overview

Dynamic recompilation proceeds in three phases. First, candidate procedures are

identified, either by the user or by a program that selects among all the procedures

in the heap. Second, these procedures are recompiled and linked to separate, new

procedures. Third, the original procedures are replaced by the new ones during the

next garbage collection.

Because a procedure’s entry and return points may change during recompilation,

the recompiler creates a translation table that associates the entry- and return-point

offsets of the original and new procedures and attaches this table to the original

procedure. The collector uses the translation table to relocate direct calls (calls to

known entry points) and return addresses. Because the collector translates return

addresses, procedures can be recompiled while they are executing. At the end of

collection, the storage from the original procedures and translation tables is freed.

Before the next collection, only the original procedures are used. This invariant

allows each original procedure to share its control-flow graph and associated counts

with the new procedure. Because the new procedure’s maximal spanning tree (see

Chapter 3) may be different from the original’s, the new procedure may increment dif-

ferent counts. The collector accounts for the difference by computing the unmeasured

counts of the original procedure so that the new procedure starts with a complete set

of accurate counts.

In environments where it is generally impossible to locate all pointers to a given

procedure at run time, dynamic recompilation can be implemented by introducing

one level of indirection into procedure calls and returns. For each procedure call, the

compiler can generate a jump to an entry stub that in turn jumps to the actual entry

point. Similarly, the compiler can cause each procedure call to return through a return

stub that jumps to the appropriate return point. With this design, translating entry



CHAPTER 4. DYNAMIC RECOMPILATION 64

and return points is as simple as changing the corresponding stubs. The extra branch

may not reduce performance significantly, especially in systems with a low frequency

of procedure calls or with a similar mechanism already in place for dynamic linking.

With branch-folding hardware, there would be no overhead, because the branches

would be eliminated from the pipeline.

Dynamic recompilation need not be limited to low-level optimizations such as

block reordering. By associating profile data with earlier compilation passes, the re-

compiler can perform run-time optimizations involving register allocation, flow anayl-

sis, lambda lifting, and procedure inlining. Because these optimizations destroy the

one-to-one correspondence among basic blocks, the collector must be sensitive to

return points in original procedures that have no corresponding, compatible return

points in recompiled procedures. By retaining original procedures as long as they have

live unassociated return addresses, the collector can support these optimizations—

even on running procedures.

4.3 Object Representations

Every Scheme object consists of a type tag and a value. There are three main methods

for representing the type tag [43]: associating the type tag with the object (typed

objects), associating the type tag with all pointers to the object (typed pointers), and

associating the tag type with the segment in which the objects reside (big bag of

pages).

Our system uses a hybrid of these three methods, which are described in detail

in [21]. Every Scheme object is represented by a 32-bit tagged integer. For a heap-

allocated object, the tagged integer is a typed pointer. The primary type tag is stored

in the lower three bits of the pointer. The starting address is always aligned on an

even eight-byte boundary so that the lower three bits are zero. If we simply add the



CHAPTER 4. DYNAMIC RECOMPILATION 65

address and the tag to form the pointer, we would need a negative displacement to

access the first element of the object. Because some architectures do not support

negative displacements, the pointer is eight less than the address plus the tag.

Scheme objects that are not heap-allocated are called immediate objects. For

efficiency, immediate objects are encoded directly in the tagged integers themselves.

In order to support efficient 30-bit integer arithmetic, our system dedicates the tags

000 and 100 to fixnums. The upper 30 bits of the tagged integer contain the 30-bit

integer. To add or subtract two fixnums, the tagged integers are added or subtracted,

respectively. To multiply two fixnums, one of the tagged integers is shifted two bits to

the right before being multiplied by the other tagged integer. To divide two fixnums,

the tagged integers are divided, and the quotient is shifted to the left two bits. These

additional shifts are avoided when one of the arguments is constant.

Other immediate objects, such as characters, booleans, and the empty list, are

encoded in the upper 29 bits of the tagged integer and are given the tag 110. The

tag 111 is used as an escape code for typed objects, which include vectors, strings,

and code objects. The four remaining tags are used for pairs, floating-point numbers,

symbols, and closures.

In order to describe the infrastructure for dynamic recompilation, we first show

how Scheme procedures are represented without the infrastructure. Then we explain

how some of the unused bits of the representations are used to support the infras-

tructure efficiently.

Scheme procedures are represented as closures and code objects. In general, there

is one code object for each procedure (lambda expression), and a closure is created

each time a procedure is evaluated. Consequently, we use the generic term procedure

to refer to code objects, not closures. A closure is a variable-length array whose

first element contains the address of the procedure’s generic entry point and whose

remaining elements contain the procedure’s free variables, as shown in Figure 13. The



CHAPTER 4. DYNAMIC RECOMPILATION 66

code:

live

return

frame
size

inst

inst

type length table
reloc name free

count info inst

relocreloc
entry entry1 r

codesize

mvrp

size
frame

code
top

mask
return
addr

addr

under-
flow

101011104-bit
subtypeunused

0reloc entry:
short

xx type
5-bit

code offset
12-bit

item offset
12-bit

1 5-bitreloc entry:
long

unused unused

item offset

code offset

xx type

stack:

closure: entry free1 freen

Figure 13: Representations of closures, code objects, and stack segments without the
infrastructure for dynamic recompilation

number of free variables is stored in the code object associated with the generic entry

point. If the ith free variable is not assigned, its value is stored in freei; otherwise, a

tagged pointer to a heap-allocated cell containing its value is stored there.

The generic entry point is the first instruction of the procedure’s machine code,

which is stored in a code object. A code object has a six-word header before the

machine code, as illustrated in Figure 13. Since a code object is a typed object,

the first word contains the type tag, which includes a four-bit subtype. The second

word contains the length of the machine code in bytes. The third word contains the

address of a relocation table, described below. The fourth word contains the name of

the procedure, either a string pointer or #f. The fifth word contains the number of

free variables. The sixth word contains a pointer to additional information used by

the debugger and recompiler.

A relocation table is used by the garbage collector to relocate items stored in the



CHAPTER 4. DYNAMIC RECOMPILATION 67

instruction stream. The first element contains the number of relocation entries in

the table. The second element contains a pointer to the code object, needed during

garbage collection to relocate relative addresses. The subsequent elements contain

relocation entries that come in two sizes. The high-order bit indicates whether the

entry is short or long. A relocation entry specifies the offset of the item within the

code stream (the code offset), the offset from the item’s address to the address actually

stored in the code stream (the item offset), and how the item is encoded in the code

stream (the type). The two x’s in the figure indicate unused bits.

In order to support multiple return values, first-class continuations, and garbage

collection efficiently, four words of data are placed in the instruction stream immedi-

ately before the single-value return point from each non-tail call [28, 3, 8]. The first

is a live mask, a bit vector describing which frame locations contain live data, used

by the garbage collector. The second is a pointer to the top of the code object, and

the collector uses it to find the code object associated with a given return address

in a stack segment. The third is the size of the frame, and it is used during collec-

tion and continuation invocation to walk down a stack segment. The fourth is the

multiple-value return address used when a procedure returns more than one value or

zero values.

There are several important considerations in the design of the infrastructure

for dynamic recompilation. Suppose a given code object has been recompiled. The

garbage collector must then relocate all references to the original code object so that

they point to the new one. The original code object must therefore be marked with

a pointer to the new one.

Because the machine code in the new code object may be quite different from

the machine code in the original code object, a translation table is needed to convert

references to particular instructions in the original code object to the corresponding

instructions in the new one. These types of references occur only as return addresses



CHAPTER 4. DYNAMIC RECOMPILATION 68

in stack segments and direct calls in code objects. Consequently, the translation table

must contain an entry for each return point and entry point (except the generic entry

point, if any, which is always the first instruction).

Suppose a short relocation entry contains a direct call to a recompiled code object.

The 12-bit item offset is the offset of the entry point in the original code object, but

the offset of the corresponding entry point in the new code object need not fit in the

12-bit field. Consequently, the relocation entries for direct calls use the long format

to avoid resizing of the relocation table. A side benefit of this approach is that the

long format provides a convenient location to store a bit indicating that the entry

corresponds to a direct call. Use of the long format does not significantly increase the

table size because direct calls account for a minority of relocation entries. Because

short entries cannot describe direct calls, they need not be checked during relocation.

Figure 14 highlights the modifications to the representation of code objects to

support dynamic recompilation. The first word of a long-format relocation entry

reserves the low-order “d” bit to indicate whether or not the given entry corresponds

to a direct call.

Three of the unused type bits are used to encode the status of a code object. The

first bit, set by the recompiler, indicates whether or not the code object has been

recompiled to a new one and is thus obsolete. Since an obsolete code object will not

be copied during collection, its relocation table is no longer needed. Therefore, its

relocation field is used instead to point to the translation table. The translation table

contains a pointer to the new code object and a list of original/new offset pairs. The

pairs are sorted by original offset to enable fast binary searching during relocation.

The second bit, denoted by “n” in the figure, indicates whether the code object

is new. This bit, set by the recompiler and cleared by the garbage collector, is used

to prevent a new code object from being recompiled before the associated obsolete

one has been eliminated. The third bit, denoted by “b” in the figure, serves a similar



CHAPTER 4. DYNAMIC RECOMPILATION 69

code:

live

return

frame
size

inst

inst

relocreloc
entry entry1 r

codesize

mvrp

size
frame

code
top

mask
return
addr

addr

under-
flow

0reloc entry:
short

xx type
5-bit

code offset
12-bit

item offset
12-bit

1 5-bitreloc entry:
long

unused

item offset

code offset

xx type unused

type length table name free
count info inst

101011104-bit
subtypeunused

size code
new new new

offset offset offset
orig orig

offset1 1 t t

instcode: transobsolete

regular
stack:

type length table
reloc name free

count info inst

101011104-bit
subtypeunused closure: entry free1 freen0 n b

d

1 0 1

Figure 14: Representations of closures, code objects, and stacks with the infrastruc-
ture for dynamic recompilation highlighted



CHAPTER 4. DYNAMIC RECOMPILATION 70

purpose. It indicates whether the code object is busy in that it is either being or

has been recompiled. This bit is used to prevent multiple recompilations of the same

code object. The recompiler sets this bit at the beginning of recompilation. Because

the recompiler may trigger a garbage collection before it creates a new code object

and marks the original one obsolete, this bit must be preserved by the collector.

It is possible to recompile a code object multiple times; however, each subsequent

recompilation must occur after the code object has been recompiled and collected. It

would be possible to relax this restriction, but in practice we have found no reason

to do so.

4.4 Garbage Collection

In order to describe how our generational [32], stop-and-copy [25] garbage collector

transparently replaces obsolete code objects with recompiled ones, we first summarize

how it manages objects without the infrastructure for dynamic recompilation. We

then explain the minor modifications necessary to support the infrastructure. (See

Wilson [48] for an excellent survey of garbage collection techniques.)

Our storage management system subdivides objects logically by generation and

space. Objects of the same generation have survived the same number of collections.

Objects of the same space are swept the same way by the collector. Spaces include

the following:

impure—for mutable, pointer-containing objects such as pairs and vectors

pure—for immutable, pointer-containing objects such as closures

code—for code objects only

data—for unswept objects such as strings

continuation—for continuation objects only



CHAPTER 4. DYNAMIC RECOMPILATION 71

The logical subdivision of objects is implemented by partitioning the heap into

fixed-size segments, each of which contains objects of only one generation and space.

A resizable segment table associates with each segment its generation and space.

Consequently, the segments comprising a given generation and space need not be

contiguous. See [21] for a more detailed description of our segmented storage model.

The garbage collector takes three inputs: the root set of pointers, the oldest

generation to be collected (o), and the target generation (t). All objects in generations

zero to l will be collected into generation t. Either t = o + 1 for normal promotion

of objects, or t = o for capping promotion at generation o. All segments whose

generation is less than or equal to l are marked old and are collectively called old

space. All objects in old space that can be reached from the root set and from older

generations are copied into generation-t segments, which are collectively called new

space. When collection finishes, all old space segments are marked free.

The collection algorithm uses a form of breadth-first search to traverse all reach-

able objects in old space [16]. The queue of objects for each space is maintained in

new space by associating an allocation pointer (the back of the queue) and a sweep

pointer (the front of the queue) with each space in generation t. The search begins

by relocating the root set of pointers. Next, the sweep pointers are used to identify

objects whose internal pointers need to be relocated. For each space except data, the

sweep pointer is advanced (removing objects from the front of the queue) as inter-

nal pointers are relocated until the sweep pointer reaches the allocation pointer (the

queue is empty). The different spaces use different approaches to sweep the objects,

as described below.

To relocate a pointer to an unforwarded object, the collector copies the object

into new space, updates the appropriate allocation pointer, and places a forwarding

marker and pointer at the old location. Because the new object is logically between

the appropriate sweep and allocation pointers, it is now on the queue of objects to



CHAPTER 4. DYNAMIC RECOMPILATION 72

be swept. The forwarding pointer is used to relocate other pointers to the object.

In our system, the forwarding marker is a unique immediate object, and it is

placed in the first word of the old object. A tagged pointer to the copied object is

placed in the second word of the old object. Because all heap allocation is double-

word aligned, there is always space in the old object for the forwarding marker and

pointer.

Because all the objects in the impure and pure spaces contain nothing but tagged

pointers and immediates, they are swept one word at a time, independent of object

boundaries. Consequently, objects that do not occupy an even number of words

are padded with the fixnum zero. Closures appear to violate the tagged pointer

rule because their entry fields contain actual addresses. The violation is resolved

by ensuring that each code object’s generic entry point is aligned on an even four-

byte boundary so that its address masquerades as a fixnum during the sweep phase.

Because the entry fields will not be relocated during the sweep phase, the entry fields

and associated code objects are relocated when closures are copied. Recursion of the

garbage collector is avoided because no pointers are relocated when code objects are

copied.

Since code objects have pointers embedded in their machine code, they are swept

one code object at a time. Because the only pointer to a code object’s relocation table

is in the relocation field, the table is stored in the data space (which is not swept) and

copied when its code object is copied. Consequently, the sweep phase does not have

to relocate the address in the relocation field. Instead, it uses the relocation table to

relocate the pointers embedded in the machine code. When it finishes, it updates the

relocation table’s code object pointer.

Continuation objects are stored in their own space because they contain untagged

pointers and thus must be swept one continuation object at a time. Continuation

objects are represented by closures, and they are distinguished from regular closures



CHAPTER 4. DYNAMIC RECOMPILATION 73

by a bit in the type field of the code object associated with the entry field. The free

variable slots are used to store information about the continuation object such as the

size and address of its stack segment (see [28, 8] for a more detailed description).

Since the only pointer to a continuation object’s stack segment is in the continuation

object, the stack segment is stored in the data space and copied when its continuation

object is copied. When a continuation object is swept, its stack segment is swept one

frame at a time using the live mask, code pointer, and frame size fields stored behind

each return address.

Pointers from objects in generations older than o to objects in younger generations

are relocated by sweeping the appropriate “dirty” sections of the older generations.

The dirty sections are identified using a form of card marking [41, 49]. The overhead

of maintaining the marks is reduced by recognizing that only mutable objects can con-

tain pointers to younger generations. Consequently, dirty marks are not maintained

for the pure, code, data, and continuation spaces.

Each generation/space pair requires a separate allocation pointer. To improve the

efficiency of allocation, the compiler generates in-line code to allocate new objects

into generation zero’s impure space. The garbage collector always copies an object

into the appropriate space of the target generation. Consequently, the collector never

sweeps objects allocated in generation zero, so there is no problem omitting the

space information for new objects. The in-line allocation code, therefore, can simply

increment a single allocation pointer and compare it against a single pointer to the

end of the current segment. On most architectures, both of these pointers are kept

in machine registers to make new allocation very fast.

Only a few modifications are necessary to support the infrastructure for dynamic

recompilation. The primary modification involves how a code object is copied. If the

obsolete bit is clear, the code object and associated relocation table are copied as

usual, but the “n” bit of the copied code object’s type field is cleared if set.



CHAPTER 4. DYNAMIC RECOMPILATION 74

If the obsolete bit is set, the code object is not copied at all. Instead, the pointer

to the new code object (found in the translation table) is relocated. The resulting

pointer is stored as the forwarding address for the obsolete code object so that all

other pointers to the obsolete code object will be forwarded to the new one. Moreover,

if the obsolete code object is instrumented for profiling, the collector propagates the

weights so that they remain accurate when the new code object increments a possibly

different subset of the weights. The list of edge/block pairs used for propagation is

found in the “info” structure. Since the propagation occurs during collection, some

of the objects in the list may be forwarded, so the collector must check for pointers

to forwarded objects as it propagates the weights.

The translation table is used to relocate direct calls and return addresses. Direct

calls are found only in code objects, so they are handled when code objects are swept.

The “d” bit of long-format relocation entries identifies the candidates for translation.

When a direct entry refers to a code object that is obsolete, the offset of that entry

is translated using the obsolete code object’s translation table and updated with the

new offset. Return addresses are found only in stack segments, so they are handled

when continuation objects are swept. When a return address refers to an obsolete

code object, the offset of the return address is translated using the obsolete code

object’s translation table to determine the corresponding return address in the new

code object.

The relocation of pointers to obsolete code objects is optimized by placing a

forwarding pointer on the obsolete code object itself after the associated new code

pointer is relocated. Because the forwarding marker overwrites the type field of

obsolete code objects, the type bits cannot be used to identify obsolete code objects

when sweeping relocation tables and continuations. Instead, the name field is used to

identify them. Since a code object’s name field cannot be a fixnum, the collector sets

the name field of an obsolete code object to fixnum zero just before it puts down the



CHAPTER 4. DYNAMIC RECOMPILATION 75

forwarding marker and pointer. Consequently, relocation of direct calls and return

addresses involves a simple zero test of the name field instead of a bit test of the type

field.

Since our collector is generational, we must address the problem of potential cross-

generational pointers from obsolete to new code objects. Our segmented heap model

allows us to allocate new objects in older generations when necessary [21]; thus, we

always allocate a new code object in the same generation as the corresponding obsolete

code object. Otherwise, we would have to add the pointer to our remembered set and

promote the new code object to the older generation during collection.

4.5 Block Reordering Example

To demonstrate the feasibility and utility of dynamic recompilation, we use a variant

of Pettis and Hansen’s basic block reordering algorithm to reduce the number of

mispredicted branches and instruction cache misses [35]. We also use edge-count

profile data to decrease profiling overhead by re-running the maximal spanning tree

algorithm to improve counter placement, as described in Chapter 3.

The block reordering algorithm proceeds in two steps. First, blocks are combined

into chains according to the most frequently executed edges to reduce the number

of instruction cache misses. Second, the chains are ordered to reduce the number of

mispredicted branches.

Initially, every block comprises a chain of one block. Using a list of edges sorted

by decreasing weight, distinct chains A and B are combined when an edge’s source

block is at the tail of A and its sink block is at the head of B. When all the edges

have been processed, a set of chains is left.

The algorithm places ordering preferences on the chains based on the conditional

branches emitted from the blocks within the chains and the target architecture’s



CHAPTER 4. DYNAMIC RECOMPILATION 76

If both edges point to blocks in the same
chain, no preferences are added.

If x ≥ y, A should come before B with
weight x − y. Otherwise, B should come
before A with weight y − x.

x

y

A

B

If x ≥ y, B should come before A before
C with weight x− y. Otherwise, C should
come before A before B with weight y−x.

x

y C

B

A

Figure 15: Adding branch prediction preferences for architectures that predict back-
ward conditional branches taken and forward conditional branches not taken

branch prediction strategy. Blocks with two outgoing edges always generate a condi-

tional branch for one of the edges, and they generate an unconditional branch when

the other edge does not point to the next block in the chain. Figure 15 illustrates how

the various conditional branch possibilities generate preferences for a common predic-

tion strategy. The preferences are implemented using a weighted directed graph with

nodes representing chains and edges representing the “should come before” relation.

As each block with two outgoing edges is processed, its preferences (if any) are

added to the weights of the graph. Suppose there is an edge of weight x from chain



CHAPTER 4. DYNAMIC RECOMPILATION 77

A to B and an edge of weight y from chain B to A, and x > y. The second edge is

removed, and the first edge’s weight becomes x−y, so that there is only one positive-

weighted edge between any two nodes. A depth-first search then topologically sorts

the chains, omitting edges that cause cycles. The machine code for the chains is

placed in a new code object, and the old code object is marked obsolete and has its

relocation field changed to point to the translation table.

4.6 Performance

To assess the cost of recompilation using our block reordering algorithm, we mea-

sured the run time, compile time, and recompile time for the set of Scheme bench-

marks described in Table 6 in Chapter 3. We also measured the number of uncon-

ditional branches (jumps) between blocks and the break-down of forward/backward,

taken/not-taken conditional branches.

As before, the measurements were taken on a DEC Alpha 3000/600 running Dig-

ital UNIX V4.0A. The Alpha architecture encourages hardware and compiler im-

plementors to predict backward conditional branches taken and forward conditional

branches not taken [40]. Current Alpha implementations use this static model as a

starting point for dynamic branch prediction. We computed the mispredicted branch

percentage using the static model as a metric for determining the effectiveness of the

block reordering algorithm.

Table 9 gives the results. The best column gives the static mispredicted branch

percentage assuming each branch is correctly predicted, even if there is no block

ordering that would cause every branch to be correctly predicted. The dyn columns

show the effectiveness of the dynamic block reordering algorithm using profile counts

from a previous run. The stat columns show the effectiveness of the block reordering

algorithm using estimated counts from the static estimator of Section 3.4. The base



CHAPTER 4. DYNAMIC RECOMPILATION 78

% Mispredicted % Jumps Run Time Comp Time
Benchmark best dyn stat base dyn stat base dyn stat dyn stat

compiler 6 9 25 72 9 9 11 0.87 0.92 0.16 1.07
softscheme 7 7 45 38 1 2 3 0.97 1.09 0.07 1.02

ddd 4 4 31 62 0 1 13 0.98 1.04 0.12 1.06
similix 7 7 27 61 0 2 2 0.99 0.99 0.16 1.05
nucleic 1 1 2 97 0 1 1 0.92 0.93 0.04 1.03
slatex 2 3 26 77 4 14 27 0.97 0.98 0.11 1.01

interpret 1 1 8 46 0 0 0 0.90 1.33 0.06 0.98
maze 10 10 16 79 9 11 10 0.92 0.93 0.08 1.02

earley 20 24 29 65 15 15 19 0.99 1.02 0.09 1.02
peval 11 11 30 66 0 1 6 0.92 0.97 0.09 1.04
boyer 3 3 6 96 26 26 26 0.86 0.88 0.08 1.03

conform 4 4 11 76 2 14 4 0.95 0.96 0.09 1.04
browse 8 8 18 82 7 11 7 0.95 0.97 0.06 1.01

simplex 10 18 18 66 18 16 23 0.95 0.97 0.09 1.04
puzzle 4 5 30 65 3 31 31 0.95 0.95 0.08 1.01
trav1 1 1 3 99 46 46 46 0.95 0.95 0.08 0.99
trav2 1 1 1 67 1 33 33 0.88 0.99 0.04 1.06

dderiv 8 8 10 69 4 4 4 0.96 0.96 0.12 1.05
fft 3 6 11 84 6 13 12 0.98 0.99 0.13 1.06

destruct 3 3 4 95 25 26 30 0.91 0.91 0.13 1.04
triangle 6 6 37 63 0 0 16 0.95 0.98 0.11 0.99

mbrot 0 1 0 99 1 9 9 0.98 0.98 0.16 1.07
deriv 9 9 13 68 0 0 0 0.96 0.96 0.16 1.06

cpstak 6 6 6 65 0 0 0 0.98 0.98 0.18 1.09
ctak 5 5 5 67 0 0 0 0.98 1.00 0.17 1.06
takl 5 5 5 69 0 0 0 0.90 0.93 0.18 1.07

diviter 0 0 0 99 33 33 33 0.89 0.95 0.14 1.06
divrec 0 0 0 100 0 0 0 0.94 0.92 0.14 1.03

tak 11 11 11 67 0 0 0 1.00 1.00 0.23 1.04
fib 20 20 20 80 0 0 0 0.95 0.95 0.23 1.06

Average 6 7 15 75 7 11 12 0.94 0.98 0.12 1.04

Table 9: Performance of dynamic recompilation using block reordering: best—all
conditional branches predicted correctly, dyn—dynamic reordering based on a previ-
ous run, stat—block ordering based on the static estimator, and base—default block
ordering. The number of jumps is relative to the number of conditional branches.



CHAPTER 4. DYNAMIC RECOMPILATION 79

of comparison for the branch statistics and the timings is the default compiler, base,

which does not reorder basic blocks.

For simplicity of code generation, most of the common run-time checks for con-

ditions such as heap and stack overflow were designed to test and branch around

the code that handles the condition. Because these tests almost always fail, the

mispredicted forward conditional branches inflate the base misprediction percentage.

Factoring them out yields an initial misprediction rate of about 50%. Rather than us-

ing ad hoc code generation techniques to remedy this situation, we decided to develop

the more general block reordering strategy presented here.

Combined with our fast static estimator, the block reordering algorithm is quite

effective at reducing the number of mispredicted branches while also slightly decreas-

ing the number of jumps. Our algorithms are also efficient, adding a mere 4% to the

average compile time.

Although static block reordering reduces the number of mispredicted branches

significantly, dynamic block reordering reduces it to a nearly minimal level and sig-

nificantly reduces the number of jumps between blocks. The reordering and recom-

pilation require only 12% of the base compile time.

Run-time reduction varies considerably among benchmarks and appears to have

little correlation with the static misprediction rate. This variation is most likely

caused by the microprocessor’s dynamic branch prediction mechanism. These results

suggest that conditional branch instructions that specify static-only prediction would

be useful. Moreover, the speed and effectiveness of our system’s block reordering

algorithm indicate that dynamic branch prediction may not be cost-effective in the

future. We hypothesize that the location of procedures in the heap also has a sig-

nificant effect on run time, especially on machines with direct-mapped caches such

as the Alpha. An important area of future work is to apply reordering techniques to

procedures as well as basic blocks to reduce instruction cache conflicts.



CHAPTER 4. DYNAMIC RECOMPILATION 80

4.7 Related Work

In the absence of profiling information, various heuristic algorithms can be used for

statically estimating branch behavior. Ball and Larus [5] describe a simple heuristic

that can significantly reduce the number of mispredicted branches. They found,

however, that on average their static prediction generates code that executes twice

as many mispredicted branches as the code generated by profile-based prediction.

Wall [47] also found that profile-based prediction is significantly better than any of

his heuristic-based predictions. Patterson [34] uses value range propagation to predict

branch behavior. Even though his technique does better than Ball and Larus’s,

profile-based prediction is still substantially better.

Profiling information can be used to increase the locality of executing code at both

intra- and inter-procedural levels. Section 4.5 summarizes Pettis and Hansen’s [35]

intraprocedural block reordering algorithm. Samples [36] explores a similar intrapro-

cedural algorithm that reduces instruction cache miss rates by up to 50%. Pettis

and Hansen [35] also describe an interprocedural algorithm that places procedures in

memory such that those that execute close together in time will also be close together

in memory. Since determining the optimal ordering is NP-complete, they use a greedy

“closest is best” strategy.

Other optimizations can also make effective use of profiling information. Chang,

Mahlke, and Hwu [14] use profile data to optimize the most frequently executed

portions of a procedure. They build “superblocks,” which are chains of basic blocks

like those generated by our reordering algorithm, and they duplicate blocks to reduce

the number of join points in an attempt to expose more opportunities for optimization.

The duplication of blocks is controlled by profile information so that code growth can

be bounded by a small constant. Classic optimizations such as constant folding,

copy propagation, common subexpression elimination, and dead code elimination are



CHAPTER 4. DYNAMIC RECOMPILATION 81

performed at the superblock level.

Chen et al. [15] use profile data to guide instruction scheduling by removing con-

straints that arise from infrequently executed portions of a procedure. McFarling [33]

uses profile data and specific information about the target architecture’s instruction

cache to guide procedure inlining.



Chapter 5

Conclusions

This dissertation describes a fast linear intraprocedural register allocation strategy

and an efficient infrastructure for profile-driven dynamic recompilation in Scheme.

Based on lazy saves, eager restores, and greedy shuffling, the register allocation strat-

egy optimizes register usage across procedure calls. The lazy save technique generates

register saves only when procedure calls are inevitable, while attempting to minimize

duplicate saves by saving as soon as it can prove that a call is inevitable. This ap-

proach is advantageous because of the high percentage of effective leaf routines. The

eager restore mechanism restores immediately after a call all registers possibly refer-

enced before the next call. While a lazy restore mechanism would reduce the number

of unnecessary restores, restoring as early as possible compensates for unnecessary

restores by reducing the effect of memory latency. The greedy shuffling algorithm or-

ders arguments and attempts to break dependency cycles by selecting the argument

causing the most dependencies; it is remarkably close to optimal in eliminating the

need for register shuffling at run time.

Performance results demonstrate that around 72% of stack accesses are eliminated

via this mechanism, and run-time performance increases by around 43% when six

registers are available for parameters and local variables. The baseline for comparison

82



CHAPTER 5. CONCLUSIONS 83

is efficient code generated by an optimizing compiler that already makes extensive use

of global registers and local register allocation. This is within range of improvements

reported for interprocedural register allocation [44, 17]. Although the compiler now

spends around 7% of its time on register allocation, the compiler actually runs faster

since it is self-compiled and benefits from its own register allocation strategy.

Other researchers have investigated the use of lambda lifting to increase the num-

ber of arguments available for placement in registers [39, 20]. While lambda lifting can

easily result in net performance decreases, it is worth investigating whether lambda

lifting with an appropriate set of heuristics such as those described in [39] can indeed

increase the effectiveness of our register allocator without significantly increasing com-

pile time.

The infrastructure for profile-driven dynamic recompilation enables completely

transparent recompilation of procedures, even while they are executing. As a proof of

concept, edge-count profile data is used to reorder basic blocks in an attempt to reduce

the number of mispredicted branches and instruction cache misses. Performance

results show that the log-linear block reordering algorithm and recompilation process

are fast, requiring an average of just 12% of the base compile time. In addition,

our reordering algorithm effectively reduces the average mispredicted branch rate to

a nearly optimal level (7%/6% when static prediction is used) while also decreasing

the number of inter-block jumps. Although dynamic branch prediction hardware

eliminates some of the need for accurate static prediction, the reordered code still

requires an average of 6% less CPU time to execute.

The profile data is obtained using a low-overhead edge-count profiling strategy

that supports first-class continuations and reinstrumentation of active procedures,

and the profile data can be graphically displayed in terms of the original source.

The profiling strategy minimizes compile-time overhead with an efficient log-linear



CHAPTER 5. CONCLUSIONS 84

counter placement algorithm. It also employs a fast and effective linear static edge-

count estimator that accurately predicts common run-time checks.

Performance results demonstrate that the estimator reduces the average initial

run-time profiling overhead from 77% to 50% while very slightly increasing the av-

erage compile-time overhead from 10% to 11%. Optimal counter placement based

on data from a previous run further reduces the average run-time overhead to 37%,

and the reinstrumentation/recompilation process costs 15% of the base compile time.

Combined with the block reordering algorithm, the static estimator reduces the aver-

age number of statically mispredicted branches to 15%, slightly reduces average run

time by 2%, and increases average compile time by just 4%.

The mechanisms described in this dissertation have all been implemented and

incorporated into Chez Scheme. The recompiler can profile and regenerate all code

in the system, including itself, as it runs. One area of future work is to explore

various heuristics for deciding which procedures would benefit from recompilation so

that profiling and recompilation can be done automatically and transparently as a

program executes.

Although Scheme is used to illustrate the details of this research, the techniques

and algorithms are not limited to Scheme. The concepts of lazy saves and eager

restores should apply to most languages, but the benefits will vary depending on dy-

namic call behavior. The edge-count profiling strategy should apply to any language.

One area of future work is to improve the static estimator’s loop prediction strategy

without sacrificing linearity. Dynamic recompilation can be done in any language

whose implementation can locate all pointers to a given procedure at run time; thus,

it is equally well suited to ML, Java, and Smalltalk, among other languages. More-

over, it can be implemented in other languages by providing one level of indirection

to procedure calls and returns, a mechanism commonly used by dynamic linkers.

Dynamic recompilation need not be limited to low-level optimizations such as



CHAPTER 5. CONCLUSIONS 85

block reordering. A promising area of future work is to associate the profile data

with earlier passes of the compiler so that higher-level optimizations such as register

allocation, lambda lifting, and procedure inlining can take advantage of the informa-

tion. For example, our register allocator could assign registers to the most frequently

referenced user variables and compiler temporaries rather than assigning them on a

first-come, first-served basis. Because these kinds of optimizations destroy the one-

to-one correspondence among basic blocks, the collector must be sensitive to return

points in original procedures that have no corresponding, compatible return points

in recompiled procedures. By retaining original procedures as long as they have live

unassociated return addresses, the collector can support these optimizations—even

on running procedures.

Another area of future work involves a generalization of edge-count profiling to

measure other dynamic program characteristics such as the number of procedure calls,

variable references, and so forth. For example, profile data can be used to measure

how many times a procedure is called versus how many times it is created, and this

ratio could be used to guide lambda lifting [20]. Combined with an estimate of the

cost of generating code for the procedure, this ratio could also help determine when

run-time code generation [30, 31] would be profitable. Our system could be extended

to recompile (specialize) a procedure based on the run-time values of its free variables.



Bibliography

[1] Kenneth R. Anderson. Courage in profiles. The Fourth International Lisp Users

and Vendors Conference, Performing LISP Tutorial, July 1994.

[2] Andrew W. Appel and Zhong Shao. Callee-save registers in continuation-passing

style. Lisp and Symbolic Computation, 5(3):191–221, 1992.

[3] J. Michael Ashley and R. Kent Dybvig. An efficient implementation of multiple

return values in Scheme. In Proceedings of the ACM SIGPLAN ’94 Conference on

Programming Language Design and Implementation, pages 140–149, June 1994.

[4] Thomas Ball and James R. Larus. Optimally profiling and tracing programs. In

Proceedings of the 19th Annual ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, pages 59–70, January 1992.

[5] Thomas Ball and James R. Larus. Branch prediction for free. In Proceedings

of the ACM SIGPLAN ’93 Conference on Programming Language Design and

Implementation, pages 300–313, June 1993.

[6] Anders Bondorf. Similix Manual, System Version 5.0. DIKU, University of

Copenhagen, Denmark, 1993.

[7] Bhaskar Bose. DDD—A transformation system for Digital Design Derivation.

Technical Report 331, Indiana University, Computer Science Department, May

1991.

[8] Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. Representing control in

the presence of one-shot continuations. In Proceedings of the ACM SIGPLAN

’96 Conference on Programming Language Design and Implementation, pages

99–107, May 1996.

86



BIBLIOGRAPHY 87

[9] Robert G. Burger. The Scheme Machine. Technical Report 413, Indiana Uni-

versity, Computer Science Department, August 1994.

[10] Robert G. Burger and R. Kent Dybvig. Printing floating-point numbers quickly

and accurately. In Proceedings of the ACM SIGPLAN ’96 Conference on Pro-

gramming Language Design and Implementation, pages 108–116, May 1996.

[11] Robert G. Burger, Oscar Waddell, and R. Kent Dybvig. Register allocation using

lazy saves, eager restores, and greedy shuffling. In Proceedings of the ACM SIG-

PLAN ’95 Conference on Programming Language Design and Implementation,

pages 130–138, June 1995.

[12] Cadence Research Systems, Bloomington, Indiana. Chez Scheme Version 5 Sys-

tem Manual, Revision 2.5, October 1994.

[13] G. J. Chaitin, M. A. Auslander, A. K. Cocke, M. E. Hopkins, and P. W. Mark-

stein. Register allocation via coloring. Computer Languages, 6:47–57, 1981.

[14] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-mei W. Hwu.

Using profile information to assist classic compiler code optimizations. Software

Practice and Experience, 21(12):1301–1321, December 1991.

[15] William Y. Chen, Scott A. Mahlke, Nancy J. Warter, Sadun Anik, and Wen-

mei W. Hwu. Profile-assisted instruction scheduling. International Journal of

Parallel Programming, 22(2):151–181, April 1994.

[16] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the

ACM, 13(11):677–678, November 1970.

[17] F. Chow. Minimizing register usage penalty at procedure calls. In Proceedings

of the ACM SIGPLAN ’88 Conference on Programming Language Design and

Implementation, pages 85–94, June 1988.

[18] Fred C. Chow and John L. Hennessy. The priority-based coloring approach

to register allocation. Transactions on Programming Languages and Systems,

12(4):501–536, October 1990.

[19] William Clinger and Jonathan Rees (editors). Revised4 report on the algorithmic

language Scheme. LISP Pointers, IV(3):1–55, July–September 1991.



BIBLIOGRAPHY 88

[20] William D. Clinger and Lars Thomas Hansen. Lambda, the ultimate label,

or a simple optimizing compiler for Scheme. In Proceedings of the 1994 ACM

Conference on LISP and Functional Programming, pages 128–139, 1994.

[21] R. Kent Dybvig, David Eby, and Carl Bruggeman. Don’t stop the BIBOP: Flexi-

ble and efficient storage management for dynamically typed languages. Technical

Report 400, Indiana University, Computer Science Department, March 1994.

[22] R. Kent Dybvig and Robert Hieb. A new approach to procedures with variable

arity. Lisp and Symbolic Computation, 3(3):229–244, 1990.

[23] R. Kent Dybvig and Robert Hieb. An optimistic strategy for argument register

saving in Scheme. Indiana University Computer Science Department, April 1991.

[24] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in

Scheme. Lisp and Symbolic Computation, 5(4):295–326, 1993.

[25] Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage-collector for

virtual-memory computer systems. Communications of the ACM, 12(11):611–

612, November 1969.

[26] Richard P. Gabriel. Performance and Evaluation of LISP Systems. MIT Press

series in computer systems. MIT Press, Cambridge, MA, 1985.

[27] R. J. Hall. Call Path Profiling. In International Conference on Software Engi-

neering 14, pages 296–306, May 1992.

[28] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the

presence of first-class continuations. In Proceedings of the ACM SIGPLAN ’90

Conference on Programming Language Design and Implementation, pages 66–77,

June 1990.

[29] David Kranz. Orbit: an optimizing compiler for Scheme. Technical Report 632,

Yale University, Computer Science Department, 1988.

[30] Mark Leone and Peter Lee. Lightweight run-time code generation. In Proceedings

of the 1994 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-

Based Program Manipulation, pages 97–106, 1994.

[31] Mark Leone and Peter Lee. Optimizing ML with run-time code generation. In

Proceedings of the ACM SIGPLAN ’96 Conference on Programming Language

Design and Implementation, pages 137–148, May 1996.



BIBLIOGRAPHY 89

[32] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the

lifetimes of objects. Communications of the ACM, 26(6):419–429, June 1983.

[33] Scott McFarling. Procedure merging with instruction caches. In Proceedings

of the ACM SIGPLAN ’91 Conference on Programming Language Design and

Implementation, pages 71–79, June 1991.

[34] Jason R. C. Patterson. Accurate static branch prediction by value range propa-

gation. In Proceedings of the ACM SIGPLAN ’95 Conference on Programming

Language Design and Implementation, pages 67–78, June 1995.

[35] Karl Pettis and Robert C. Hansen. Profile guided code positioning. In Proceedings

of the ACM SIGPLAN ’90 Conference on Programming Language Design and

Implementation, pages 16–27, June 1990.

[36] A. Dain Samples. Profile-driven compilation. Technical Report 627, University

of California, Berkeley, 1991.

[37] Patrick M. Sansom and Simon L. Peyton Jones. Time and space profiling for

non-strict higher-order functional languages. In Proceedings of the 22nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pages 355–366, January 1995.

[38] Robert Sedgewick. Algorithms, chapter 31. Addison-Wesley Publishing Com-

pany, second edition, 1988.

[39] Zhong Shao and Andrew W. Appel. Space-efficient closure representations. In

Proceedings of the 1994 ACM Conference on LISP and Functional Programming,

pages 150–161, 1994.

[40] Richard L. Sites, editor. Alpha Architecture Reference Manual. Digital Press,

1992.

[41] Patrick G. Sobalvarro. A lifetime-based garbage collector for LISP systems

on general-purpose computers. B.S. thesis, Massachusetts Institute of Tech-

nology, Electrical Engineering and Computer Science Department, Cambridge,

Massachusetts, 1988.

[42] Amitabh Srivastava and Alan Eustace. ATOM: A system for building customized

program analysis tools. Technical Report 94/2, Digital Equipment Corpora-

tions’s Western Research Laboratory, March 1994.



BIBLIOGRAPHY 90

[43] P. A. Steenkiste. Tags and run-time type checking. In Peter Lee, editor, Advanced

Language Implementation, chapter 1, pages 3–24. The MIT Press, 1991.

[44] P. A. Steenkiste and J. L. Hennessy. A simple interprocedural register allocation

algorithm and its effectiveness for Lisp. Transactions on Programming Languages

and Systems, 11(1):1–32, January 1989.

[45] M. Esen Tuna, Steven D. Johnson, and Robert G. Burger. Continuations in

hardware-software codesign. In Proceedings of the IEEE International Confer-

ence on Computer Design, pages 264–269, October 1994.

[46] Oscar Waddell. SWL reference manual. Indiana University and Cadence Re-

search Systems, August 1996.

[47] David W. Wall. Predicting program behavior using real or estimated profiles. In

Proceedings of the ACM SIGPLAN ’91 Conference on Programming Language

Design and Implementation, pages 59–70, June 1991.

[48] Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves Bekkers and

Jacques Cohen, editors, Proceedings of the International Workshop on Memory

Management, pages 1–42. Springer Verlag, September 1992.

[49] Paul R. Wilson and Thoman G. Moher. Design of the opportunistic garbage

collector. In ACM OOPSLA ’89 Conference Proceedings, pages 23–35, October

1989.

[50] Andrew K. Wright and Robert Cartwright. A practical soft type system for

Scheme. In Proceedings of the 1994 ACM Conference on LISP and Functional

Programming, pages 250–262, 1994.



Curriculum Vitae

Robert G. Burger graduated as valedictorian from St. John’s Lutheran School in

LaPorte, Indiana in 1983 and as co-valedictorian from LaPorte High School in 1987.

From 1987 to 1991 he was an Eisenhower Scholar at Rose-Hulman Institute of

Technology, where he graduated at the top of his class with a Bachelor of Science

degree in the double-major of Computer Science and Mathematics plus a Technical

Translator’s Certificate in German.

From 1991 to 1992 he maintained large IBM MVS/ESA mainframes and mid-size

IBM AS/400 systems as an associate systems engineer at Bristol-Myers Squibb in

Evansville, Indiana.

He began graduate studies in Computer Science at Indiana University in 1992

after receiving a three-year Graduate Research Fellowship from the National Science

Foundation. In 1994 he completed a Master of Science degree. While working on

his doctorate, he was an associate instructor for a sequence of two upper-level com-

piler design and implementation courses, a research assistant on a National Science

Foundation Educational Infrastructure grant, and an independent contractor for Ca-

dence Research Systems. He published several papers [9, 10, 11, 45], and in 1997 he

completed a Doctor of Philosophy degree in Computer Science.


